在等腰梯形ABCD中,AD平行BC,AB=DC,点P为BC边上一点,PE垂直AB于点E,PF垂直DC于点F,BG垂直CD于点G,求PE+PF=B
3个回答
展开全部
证明:过点P作PH⊥BG,垂足为H,(1分)
∵BG⊥CD,PF⊥CD,PH⊥BG,
∴∠PHG=∠HGC=∠PFG=90°,
∴四边形PHGF是矩形,
∴PF=HG,PH∥CD,(1分)
∴∠BPH=∠C,(1分)
在等腰梯形ABCD中,∠PBE=∠C,
∴∠PBE=∠BPH,(1分)
∵∠PEB=∠BHP=90°,BP=PB,∠PBE=∠BPH,
∴△PBE≌△BPH(AAS)(2分)
∴PE=BH,(1分)
∴PE+PF=BH+HG=BG.(1分)
∵BG⊥CD,PF⊥CD,PH⊥BG,
∴∠PHG=∠HGC=∠PFG=90°,
∴四边形PHGF是矩形,
∴PF=HG,PH∥CD,(1分)
∴∠BPH=∠C,(1分)
在等腰梯形ABCD中,∠PBE=∠C,
∴∠PBE=∠BPH,(1分)
∵∠PEB=∠BHP=90°,BP=PB,∠PBE=∠BPH,
∴△PBE≌△BPH(AAS)(2分)
∴PE=BH,(1分)
∴PE+PF=BH+HG=BG.(1分)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询