高等数学求偏导数
1个回答
展开全部
(1)
Z=X2+Y2 ①
X2+2Y2+3Z2=4②
①两边对x求导,得
dz/dx=2x+2ydy/dx③
②两边对x求导,得
2x+4ydy/dx+6zdz/dx=0④
③代入④,得
2x+4ydy/dx+6z(2x+2ydy/dx)=0
x+2ydy/dx+6z(x+ydy/dx)=0
(2y+6yz)dy/dx=-x-6xz
dy/dx=(-x-6xz)/(2y+6yz)
从而
dz/dx=2x- (2xy+12xyz)/(2y+6yz)
=(2xy)/(2y+6yz)
(2)
都对x求导
1+dy/dx+dz/dx =0 (1)
2x+2ydy/dx+2zdz/dx=0 (式子两边约去2)
x+ydy/dx+zdz/dx=0 (2)
上面两式联立解方程组
(1)乘以y
y+ydy/dx+ydz/dx=0 (3)
(3)-(2)
(y-x)+(y-z)dz/dx=0
(y-z)dz/dx=x-y
dz/dx=(x-y)/(y-z)
同理可求得
dy/dx=(x-z)/(z-y)
跪求采纳,日子不好过啊
Z=X2+Y2 ①
X2+2Y2+3Z2=4②
①两边对x求导,得
dz/dx=2x+2ydy/dx③
②两边对x求导,得
2x+4ydy/dx+6zdz/dx=0④
③代入④,得
2x+4ydy/dx+6z(2x+2ydy/dx)=0
x+2ydy/dx+6z(x+ydy/dx)=0
(2y+6yz)dy/dx=-x-6xz
dy/dx=(-x-6xz)/(2y+6yz)
从而
dz/dx=2x- (2xy+12xyz)/(2y+6yz)
=(2xy)/(2y+6yz)
(2)
都对x求导
1+dy/dx+dz/dx =0 (1)
2x+2ydy/dx+2zdz/dx=0 (式子两边约去2)
x+ydy/dx+zdz/dx=0 (2)
上面两式联立解方程组
(1)乘以y
y+ydy/dx+ydz/dx=0 (3)
(3)-(2)
(y-x)+(y-z)dz/dx=0
(y-z)dz/dx=x-y
dz/dx=(x-y)/(y-z)
同理可求得
dy/dx=(x-z)/(z-y)
跪求采纳,日子不好过啊
追问
好!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询