已知函数f(x)=3^x,且f(a+2)=18
已知函数f(x)=3^x,且f(a+2)=18,函数g(x)=3ˇ(ax)-4ˇx的定义域为【0,1】。(1)求g(x)的表达式;(2)求证:g(x)在区间【0,1】上为...
已知函数f(x)=3^x,且f(a+2)=18,函数g(x)=3ˇ(ax)-4ˇx的定义域为【0,1】。
(1)求g(x)的表达式;
(2)求证:g(x)在区间【0,1】上为单调递减函数;
(3)求函数g(x)的值域。 展开
(1)求g(x)的表达式;
(2)求证:g(x)在区间【0,1】上为单调递减函数;
(3)求函数g(x)的值域。 展开
展开全部
解答:
1,f(x)=3^x
f-1(18)=a+2,即f(a+2)=18
3^(a+2)=18
3^a=2、a=log3(2);
所以g(x)=3^(ax)-4^x=(3^a)^x-4^x=2^x-4^x
即g(x)=2^x-4^x(0≤x≤1)。
2,g(x)=2^x-4^x
对其求导得
g'(x)=2^xlna-4^xln4=2^xln2(1-2*2^x)
因为x∈[0,1]
所以2^x∈[1,2],于是g'(x)<0
函数在[0,1]上是减函数。
3,由2知函数是减函数
所以g(x)∈[-2,0]。
1,f(x)=3^x
f-1(18)=a+2,即f(a+2)=18
3^(a+2)=18
3^a=2、a=log3(2);
所以g(x)=3^(ax)-4^x=(3^a)^x-4^x=2^x-4^x
即g(x)=2^x-4^x(0≤x≤1)。
2,g(x)=2^x-4^x
对其求导得
g'(x)=2^xlna-4^xln4=2^xln2(1-2*2^x)
因为x∈[0,1]
所以2^x∈[1,2],于是g'(x)<0
函数在[0,1]上是减函数。
3,由2知函数是减函数
所以g(x)∈[-2,0]。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询