一个数论问题,高手进!

看图。要有详细过程,仅有答案的不行。谢!谢!... 看图。
要有详细过程,
仅有答案的不行。
谢! 谢!
展开
lca001
2010-10-09 · TA获得超过1.4万个赞
知道大有可为答主
回答量:2493
采纳率:0%
帮助的人:1248万
展开全部

解由2^(p-1)/p是平方数,则存在整数n,使得(2^(p-1)-1)/p=n^2

即                   2^(p-1)-1=p×n^2,   敬答             (1)

当p=2时,2^(p-1)-1=1,显然不存在n,使得1=2×n^2,故p=2不满足(1)式,p=2不是该问题的解,下面仅考虑p是奇素数的情况:

对任意奇素数p,设p=2k+1,k≥1为整数,故得

2^(p-1)-1=2^(2k)-1=(2^k+1)(2^k-1),代入(1)得

       (2^k+1)(2^k-1)=p×n^2,                 (2)

故p整除2^k+1或2^k-1,由p,2^k+1,2^k-1均为奇数,故n也必是奇数,则存在整数t有n=2t+1,n^2=4t^2+4t+1=4s+1,即n^2≡1(mod4),如果p≡1(mod4),则p×n^2≡1(mod4),而2^(p-1)-1≡-1(mod4),这与(1)式矛盾,故p≡-1(mod4),即p只能整除2^k-1,再由于2^k+1,2^k-1互素,则一定存在n=uv使得

2^k+1=u^2

2^k-1=pv^2

由2^k+1=u^2得2^k=(u-1)(u+1),2是该式两边惟一的素因,故存在整数t使得u-1=2^t,当u>3时,t>1,则u+1=2(2^(t-1)+1)含有奇数因子2^(t-1)+1,故u>3时该问题无解,即2^k+1=u^2>9,k>3,p=2k+1>7无解.

将满悉稿游足p≡-1(mod4)且睁销p≤7的3,7代入(1)式,经验证均是该问题的解.

故满足条件的p仅有3,7.

电灯剑客
科技发烧友

2010-10-08 · 智能家居/数码/手机/智能家电产品都懂点
知道大有可为答主
回答量:1.2万
采纳率:83%
帮助的人:4740万
展开全部
只有5楼CharmQuark的答案还明罩让算靠谱,不过还是有很严重的问题。

设2^{p-1}-1=p*a^2

1) p>2,直接验证。

2) p必定是闷腊4k-1型的,因为左侧2^{p-1}-1是4k-1型的,而a^2必定是4k+1型的(事实上a^2一定是8k+1型的,只是这题不需要用)。直接验证p=3和p=7。

3) 当p>7时,记p=2m+1,2^{p-1}-1=(2^m+1)(2^m-1)=p*a^2,注意到2^m+1和2^m-1互质,因此a的因子必须成对分激局布于其中,再考察关于4的余数可得
2^m+1=u^2
2^m-1=p*v^2
a=uv
然后只需要看第一个方程
2^m=u^2-1=(u+1)(u-1)
又端两项最大公因子至多是2,所以当u>3时无解,于是p>7时无解。

5楼的问题在于直接默认了第3步中a的因子不能拆分到两边,而这是需要证明的。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
CharmQuark
2010-10-07
知道答主
回答量:7
采纳率:0%
帮助的人:5.8万
展开全部
令 u = 2^[(p-1)/2], 则 2^(p-1) - 1 = (u + 1)(u - 1). 显然 p 不等于 2, u 为偶数碧谨, 所以 (u + 1) 与 (u - 1) 互素. 因此, u + 1 = p 或 u - 1 = p, 另一项是平方如慧枝数. 由于 u 随 p 指数增长, 当 p > 7 时 u 恒大于 p + 1, 因此只渣敏要检验 3, 5, 7 三个数, 两种情况的解分别为 3 和 7.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
xyy19851204
2010-10-13 · TA获得超过316个赞
知道答主
回答量:118
采纳率:0%
帮助的人:109万
展开全部
令 u = 2^[(p-1)/2], 则 2^(p-1) - 1 = (u + 1)(u - 1). 显然 p 不等于 2, u 为偶数碧谨, 所以 (u + 1) 与 (u - 1) 互素. 因此, u + 1 = p 或 u - 1 = p, 另一项是平方如慧枝数. 由于 u 随 p 指数增长, 当 p > 7 时 u 恒大于 p + 1, 因此只渣敏要检验 3, 5, 7 三个数, 两种情况的解分别为 3 和 7.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
绝对不虚伪
2010-10-05
知道答主
回答量:1
采纳率:0%
帮助的人:0
展开全部
1不是素数,所以应该只有 3 和 7 。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(7)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式