若正实数x,y满足x+y+1/x+1/y=5,则x+y的最大值是多少
2个回答
2015-12-16
展开全部
已知x、y∈R+,
故依柯西不等式得
5=x+y+1/x+1/y
≥(x+y)+4/(x+y)
→(x+y)^2-5(x+y)+4≤0
→1≤x+y≤4.
∴x=y=2时,
所求最大值为:4。
故依柯西不等式得
5=x+y+1/x+1/y
≥(x+y)+4/(x+y)
→(x+y)^2-5(x+y)+4≤0
→1≤x+y≤4.
∴x=y=2时,
所求最大值为:4。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询