如图,已知:点B、E、F、C在同一直线上,∠A=∠D,BE=CF,且AB∥CD.求证:AF∥ED证明:∵BE=FC∴BE+EF=F

如图,已知:点B、E、F、C在同一直线上,∠A=∠D,BE=CF,且AB∥CD.求证:AF∥ED证明:∵BE=FC∴BE+EF=FC+EF(______)即:______... 如图,已知:点B、E、F、C在同一直线上,∠A=∠D,BE=CF,且AB∥CD.求证:AF∥ED证明:∵BE=FC∴BE+EF=FC+EF(______)即:______∵AB∥CD∴∠B=∠C(______)∠A=∠D∠B=∠C在△ABF和△DCE中,有BF=CE∴△ABF≌△DCE(______)∴∠AFB=∠DEC(______)∴AF∥ED(______) 展开
 我来答
凉会妮9937
推荐于2018-04-15 · 超过82用户采纳过TA的回答
知道答主
回答量:144
采纳率:100%
帮助的人:70.7万
展开全部
证明:∵BE=FC,
∴BE+EF=FC+EF(等式的性质),
即BF=CE,
∵AB∥CD,
∴∠B=∠C(两直线平行内错角相等),
∠A=∠D,
∠B=∠C,
在△ABF和△DCE中,
∠A=∠D
∠B=∠C
BF=CE

∴△ABF≌△DCE(AAS),
∴∠AFB=∠DEC(全等三角形对应角相等),
∴AF∥ED(内错角相等两直线平行).
故答案为:等式的性质;BF=CE;两直线平行内错角相等;AAS;全等三角形对应角相等;内错角相等两直线平行
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式