已知f(x)=(x2+ax+a)e-x(a≤2,x∈R).(1)当a=1时,求f(x)的单调区间;(2)是否存在实数a,使f

已知f(x)=(x2+ax+a)e-x(a≤2,x∈R).(1)当a=1时,求f(x)的单调区间;(2)是否存在实数a,使f(x)的极大值为3?若存在,求出a的值,若不存... 已知f(x)=(x2+ax+a)e-x(a≤2,x∈R).(1)当a=1时,求f(x)的单调区间;(2)是否存在实数a,使f(x)的极大值为3?若存在,求出a的值,若不存在,说明理由. 展开
 我来答
小柒神5473
推荐于2016-06-19 · 超过67用户采纳过TA的回答
知道小有建树答主
回答量:138
采纳率:100%
帮助的人:63万
展开全部
(1)当a=1时,f(x)=(x2+x+1)e-x;f′(x)=e-x(-x2+x)(2分)
当f′(x)>0时,0<x<1.当f′(x)<0时x>1或x<0
∴f(x)的单调递增区间为(0,1),
单调递减区间为(-∞,0)(1,+∞)(4分)
(2)f′(x)=(2x+a)e-x-e-x(x2+ax+a)=e-x[-x2+(2-a)x](6分)
令f′(x)=0,得x=0或x=2-a,列表如下:

由表可知f(x)极大=f(2-a)=(4-a)ea-2(8分)
设g(a)=(4-a)ea-2,g′(a)=(3-a)ea-2>0(10分)
∴g(a)在(-∞,2)上是增函数,∴g(a)≤g(2)=2<3∴(4-a)ea-2≠3
∴不存在实数a使f(x)最大值为3.(12分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式