对于c>0,当非零实数a,b满足4a2-2ab+b2-c=0且使|2a+b|最大时,1a+2b+4c的最小值为______

对于c>0,当非零实数a,b满足4a2-2ab+b2-c=0且使|2a+b|最大时,1a+2b+4c的最小值为______.... 对于c>0,当非零实数a,b满足4a2-2ab+b2-c=0且使|2a+b|最大时,1a+2b+4c的最小值为______. 展开
 我来答
所吉欣xT
推荐于2016-11-23 · 超过65用户采纳过TA的回答
知道答主
回答量:115
采纳率:0%
帮助的人:158万
展开全部
∵4a2-2ab+b2-c=0,
c
4
=(a?
b
4
)2+
3
16
b2

由柯西不等式得,
[(a?
b
4
)2+(
3
b
4
)2
][22+(2
3
)2
]≥[2(a?
b
2
)+
3
b
4
×2
3
]
2=|2a+b|2
故当|2a+b|最大时,有
a?
b
4
2
3
b
4
2
3

a=
1
2
b
,c=b2
1
a
+
2
b
+
4
c
=
2
b
+
2
b
+
4
b2
=4(
1
b
+
1
2
)2?1

当b=-2时,取得最小值为-1.
故答案为:-1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式