已知函数f(x)=|x+2|+1,g(x)=kx,若f(x)=g(x)有两个不相等的实根,则实数k的取值范围是(?1,?12)

已知函数f(x)=|x+2|+1,g(x)=kx,若f(x)=g(x)有两个不相等的实根,则实数k的取值范围是(?1,?12)(?1,?12).... 已知函数f(x)=|x+2|+1,g(x)=kx,若f(x)=g(x)有两个不相等的实根,则实数k的取值范围是(?1,?12)(?1,?12). 展开
 我来答
纯洁潇潇8炉0
2014-11-16 · TA获得超过114个赞
知道小有建树答主
回答量:134
采纳率:50%
帮助的人:66.4万
展开全部
解答:解:由题意可得函数f(x)的图象(蓝线)
和函数g(x)的图象(红线)有两个交点,
如图所示:KOA=-
1
2

数形结合可得-1<k<-
1
2

故答案为:(?1,?
1
2
)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式