初一数学题求解答。,,。, 30
2个回答
展开全部
Sn
=(1+1)+[a^(-1)+4]+[a^(-2)+7]+……+[a^(1-n)+(3n-2)]
=[1+a^(-1)+a^(-2)+……+a^(1-n)] + [1+4+7+……+(3n-2)]
前者为等比数列,公比为a^(-1)
后者为等差数列,公差为3
=[1-a^(-n)]/(1-a)+[1+(3n-2)]*n/2
=[1-a^(-n)]/(1-a)+(3n-1)n/2
解:(1)由f(x)=x/ax+b=x
即ax²+(b-1)x=0有唯一解,
∴b=1,
又f(2)=2/﹙ax²+1﹚=1,
∴a=1/2,
∴f(x)=x/﹙1/2x+1﹚=2x/x+2,
=(1+1)+[a^(-1)+4]+[a^(-2)+7]+……+[a^(1-n)+(3n-2)]
=[1+a^(-1)+a^(-2)+……+a^(1-n)] + [1+4+7+……+(3n-2)]
前者为等比数列,公比为a^(-1)
后者为等差数列,公差为3
=[1-a^(-n)]/(1-a)+[1+(3n-2)]*n/2
=[1-a^(-n)]/(1-a)+(3n-1)n/2
解:(1)由f(x)=x/ax+b=x
即ax²+(b-1)x=0有唯一解,
∴b=1,
又f(2)=2/﹙ax²+1﹚=1,
∴a=1/2,
∴f(x)=x/﹙1/2x+1﹚=2x/x+2,
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询