已知数列{ a n }的前n项和为S n ,且S n =2a n -l;数列{b n }满足b n-1 -b n =b n b n-1 (n≥2,n∈N *
已知数列{an}的前n项和为Sn,且Sn=2an-l;数列{bn}满足bn-1-bn=bnbn-1(n≥2,n∈N*)b1=1.(Ⅰ)求数列{an},{bn}的通项公式;...
已知数列{ a n }的前n项和为S n ,且S n =2a n -l;数列{b n }满足b n-1 -b n =b n b n-1 (n≥2,n∈N * )b 1 =1.(Ⅰ)求数列{a n },{b n }的通项公式;(Ⅱ)求数列{ a n b n }的前n项和T.
展开
1个回答
展开全部
(Ⅰ)当n=1时,a 1 =S 1 =2a 1 -1,解得a 1 =1. 又当n≥2时,a n =S n -S n-1 =2a n -1-(2a n-1 -1)=2a n -2a n-1 , ∴a n =2a n-1 (n≥2). ∴数列{a n }是首项为1,公比为2的等比数列. ∴ a n =1× 2 n-1 = 2 n-1 (n∈ N * ) . 由b n-1 -b n =b n b n-1 ,得
又b 1 =1,所以数列{
∴
∴ b n =
(Ⅱ)由(Ⅰ)可得:
∴T n =1×2 0 +2×2 1 +…+n?2 n-1 , 2T n =1×2 1 +2×2 2 +…+(n-1)?2 n-1 +n?2 n ,. 两式相减,得 - T n =1+ 2 1 + 2 2 +…+ 2 n-1 -n? 2 n =
∴ T n =(n-1)? 2 n +1 . |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询