选修4~4:坐标系与参数方程在直角坐标系xOy中,直线l的参数方程为x=1+tcosαy=2+tsinα(t为参数)在极

选修4~4:坐标系与参数方程在直角坐标系xOy中,直线l的参数方程为x=1+tcosαy=2+tsinα(t为参数)在极坐标系(与直角坐标系xOy取相同的长度单位.且以原... 选修4~4:坐标系与参数方程在直角坐标系xOy中,直线l的参数方程为x=1+tcosαy=2+tsinα(t为参数)在极坐标系(与直角坐标系xOy取相同的长度单位.且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=6sinθ.(I)求圆C的直角坐标方程;(Ⅱ)设圆C与直线l交于点A,B.若点P的坐标为(1,2),求|PA|+|PB|的最小值. 展开
 我来答
Peter说科技
推荐于2016-12-01 · TA获得超过320个赞
知道小有建树答主
回答量:1680
采纳率:100%
帮助的人:109万
展开全部
(Ⅰ)由ρ=6sinθ得ρ2=6ρsinθ,化为直角坐标方程为x2+y2=6y,即x2+(y-3)2=9.
(Ⅱ)将l的参数方程代入圆C的直角坐标方程,得t2+2(cosα-sinα)t-7=0.
由△=(2cosα-2sinα)2+4×7>0,故可设t1,t2是上述方程的两根,
所以
t1+t2=-2(cosα-sinα)
t1?t2=-7
又直线l过点(1,2),
故结合t的几何意义得|PA|+|PB|=|t1|+|t2|=|t1-t2|=
(t1+t2)2-4t1t2
=
4(cosα-sinα)2+28
=
32-4sin2α
32-4
=2
7

所以|PA|+|PB|的最小值为2
7
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式