设函数f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f

设函数f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f′(x)的最小值为-12.(Ⅰ)求a,b,c的值... 设函数f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f′(x)的最小值为-12.(Ⅰ)求a,b,c的值;(Ⅱ)求函数f(x)的单调递增区间,并求函数f(x)在[-1,3]上的最大值和最小值. 展开
 我来答
血染柒尕6580
推荐于2016-05-07 · 超过65用户采纳过TA的回答
知道答主
回答量:118
采纳率:0%
帮助的人:121万
展开全部
(Ⅰ)∵f(x)为奇函数,
∴f(-x)=-f(x)
即-ax3-bx+c=-ax3-bx-c
∴c=0
∵f'(x)=3ax2+b的最小值为-12
∴b=-12
又直线x-6y-7=0的斜率为
1
6

因此,f'(1)=3a+b=-6
∴a=2,b=-12,c=0.
(Ⅱ)f(x)=2x3-12x.f′(x)=6x2?12=6(x+
2
)(x?
2
)
,列表如下:

所以函数f(x)的单调增区间是(?∞,?
2
)
(
2
,+∞)

∵f(-1)=10,f(
2
)=?8
2
,f(3)=18
∴f(x)在[-1,3]上的最大值是f(3)=18,最小值是f(
2
)=?8
2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式