如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.(1)求PB
如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.(1)求PB和平面PAD所成的角的大小;(2...
如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.(1)求PB和平面PAD所成的角的大小;(2)证明AE⊥平面PCD.
展开
展开全部
(1)解:在四棱锥P-ABCD中,
因PA⊥底面ABCD,AB?平面ABCD,
故PA⊥AB.
又AB⊥AD,PA∩AD=A,
从而AB⊥平面PAD,
故PB在平面PAD内的射影为PA,从而∠APB为PB和平面PAD所成的角.
在Rt△PAB中,AB=PA,故∠APB=45°.
所以PB和平面PAD所成的角的大小为45°.
(2)证明:在四棱锥P-ABCD中,
因为PA⊥底面ABCD,CD?平面ABCD,
所以CD⊥PA.
因为CD⊥AC,PA∩AC=A,
所以CD⊥平面PAC.
又AE?平面PAC,所以AE⊥CD.
由PA=AB=BC,∠ABC=60°,可得AC=PA.
因为E是PC的中点,所以AE⊥PC.
又PC∩CD=C,
所以AE⊥平面PCD.
因PA⊥底面ABCD,AB?平面ABCD,
故PA⊥AB.
又AB⊥AD,PA∩AD=A,
从而AB⊥平面PAD,
故PB在平面PAD内的射影为PA,从而∠APB为PB和平面PAD所成的角.
在Rt△PAB中,AB=PA,故∠APB=45°.
所以PB和平面PAD所成的角的大小为45°.
(2)证明:在四棱锥P-ABCD中,
因为PA⊥底面ABCD,CD?平面ABCD,
所以CD⊥PA.
因为CD⊥AC,PA∩AC=A,
所以CD⊥平面PAC.
又AE?平面PAC,所以AE⊥CD.
由PA=AB=BC,∠ABC=60°,可得AC=PA.
因为E是PC的中点,所以AE⊥PC.
又PC∩CD=C,
所以AE⊥平面PCD.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询