如图甲,直角梯形ABCD中,AB⊥AD,AD∥BC,F为AD的中点,E在BC上,且EF∥AB,已知AB=AD=CE=2,现沿EF把四
如图甲,直角梯形ABCD中,AB⊥AD,AD∥BC,F为AD的中点,E在BC上,且EF∥AB,已知AB=AD=CE=2,现沿EF把四边形CDFE折起如图乙,使平面CDFE...
如图甲,直角梯形ABCD中,AB⊥AD,AD∥BC,F为AD的中点,E在BC上,且EF∥AB,已知AB=AD=CE=2,现沿EF把四边形CDFE折起如图乙,使平面CDFE⊥平面ABEF.(Ⅰ)求证:AD∥平面BCE;(Ⅱ)求证:AB⊥平面BCE;(Ⅲ)求三棱锥C-ADE的体积.
展开
1个回答
展开全部
证明:(Ⅰ)由题意知AF∥BE,∴AF∥面BCE,同理,∵DF∥CE,
∴DF∥面BCE.AF∩DF=F,AF?面ADF,DF?面ADF,∴面ADF∥面BCE.
∵AD?面ADF,∴AD∥面BCE.(4分)
(Ⅱ)在图甲中,EF∥AB,AB⊥AD,∴EF⊥AD,∴在图乙中CE⊥EF.
∵平面CDEF⊥平面ABFE,平面CDEF∩平面ABFE=EF∴CE⊥平面ABFE,
∴CE⊥AB,又AB⊥BE,∴AB⊥平面BCE.(8分)
(Ⅲ)∵平面CDEF⊥平面ABFE,AF⊥EF,∴AF⊥平面CDEF,(10分)
AF为三棱锥A-CDE的高,且AF=1,又AB=CE=2,
∴S△CDE=
×2×2=2,∴VC?ADE=VA?CDE=
×2×1=
.(12分)
∴DF∥面BCE.AF∩DF=F,AF?面ADF,DF?面ADF,∴面ADF∥面BCE.
∵AD?面ADF,∴AD∥面BCE.(4分)
(Ⅱ)在图甲中,EF∥AB,AB⊥AD,∴EF⊥AD,∴在图乙中CE⊥EF.
∵平面CDEF⊥平面ABFE,平面CDEF∩平面ABFE=EF∴CE⊥平面ABFE,
∴CE⊥AB,又AB⊥BE,∴AB⊥平面BCE.(8分)
(Ⅲ)∵平面CDEF⊥平面ABFE,AF⊥EF,∴AF⊥平面CDEF,(10分)
AF为三棱锥A-CDE的高,且AF=1,又AB=CE=2,
∴S△CDE=
1 |
2 |
1 |
3 |
2 |
3 |
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询