(2011?泰安)如图,一次函数y=k1x+b的图象经过A(0,-2),B(1,0)两点,与反比例函数y=k2x的图象在
(2011?泰安)如图,一次函数y=k1x+b的图象经过A(0,-2),B(1,0)两点,与反比例函数y=k2x的图象在第一象限内的交点为M,若△OBM的面积为2.(1)...
(2011?泰安)如图,一次函数y=k1x+b的图象经过A(0,-2),B(1,0)两点,与反比例函数y=k2x的图象在第一象限内的交点为M,若△OBM的面积为2.(1)求一次函数和反比例函数的表达式;(2)在x轴上是否存在点P,使AM⊥MP?若存在,求出点P的坐标;若不存在,说明理由.
展开
1个回答
展开全部
解:(1)∵直线y=k1x+b过A(0,-2),B(1,0)两点
∴
,
∴
∴一次函数的表达式为y=2x-2.(3分)
∴设M(m,n),作MD⊥x轴于点D
∵S△OBM=2,
∴
OB?MD=2,
∴
n=2
∴n=4(5分)
∴将M(m,4)代入y=2x-2得4=2m-2,
∴m=3
∵M(3,4)在双曲线y=
上,
∴4=
,
∴k2=12
∴反比例函数的表达式为y=
(2)过点M(3,4)作MP⊥AM交x轴于点P,
∵MD⊥BP,
∴∠PMD=∠MBD=∠ABO
∴tan∠PMD=tan∠MBD=tan∠ABO=
=
=2(8分)
∴在Rt△PDM中,
=2,
∴PD=2MD=8,
∴OP=OD+PD=11
∴在x轴上存在点P,使PM⊥AM,此时点P的坐标为(11,0)(10分)
∴
|
∴
|
∴一次函数的表达式为y=2x-2.(3分)
∴设M(m,n),作MD⊥x轴于点D
∵S△OBM=2,
∴
1 |
2 |
∴
1 |
2 |
∴n=4(5分)
∴将M(m,4)代入y=2x-2得4=2m-2,
∴m=3
∵M(3,4)在双曲线y=
k2 |
x |
∴4=
k2 |
3 |
∴k2=12
∴反比例函数的表达式为y=
12 |
x |
(2)过点M(3,4)作MP⊥AM交x轴于点P,
∵MD⊥BP,
∴∠PMD=∠MBD=∠ABO
∴tan∠PMD=tan∠MBD=tan∠ABO=
OA |
OB |
2 |
1 |
∴在Rt△PDM中,
PD |
MD |
∴PD=2MD=8,
∴OP=OD+PD=11
∴在x轴上存在点P,使PM⊥AM,此时点P的坐标为(11,0)(10分)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询