已知中心在原点、焦点在x轴上的椭圆C1与双曲线C2有共同的焦点,设左右焦点分别为F1,F2,P是C1与C2在第一

已知中心在原点、焦点在x轴上的椭圆C1与双曲线C2有共同的焦点,设左右焦点分别为F1,F2,P是C1与C2在第一象限的交点,△PF1F2是以PF1为底边的等腰三角形,若椭... 已知中心在原点、焦点在x轴上的椭圆C1与双曲线C2有共同的焦点,设左右焦点分别为F1,F2,P是C1与C2在第一象限的交点,△PF1F2是以PF1为底边的等腰三角形,若椭圆与双曲线的离心率分别为e1,e2,则e1?e2的取值范围是(  )A.(19,+∞)B.(15,+∞)C.(13,+∞)D.(0,+∞) 展开
 我来答
昂如冰0Kl
2014-08-25 · TA获得超过173个赞
知道答主
回答量:136
采纳率:60%
帮助的人:61.1万
展开全部
∵中心在原点、焦点在x轴上的椭圆C1与双曲线C2有共同的焦点,
设左右焦点分别为F1,F2,P是C1与C2在第一象限的交点,
△PF1F2是以PF1为底边的等腰三角形,
∴设椭圆和双曲线的长轴长分别为2a1,2a2,焦距为2c,
设|PF1|=x,|PF2|=|F1F2|=y,
由题意得
x+y=2a1
x?y=2a2
2c=y

∵椭圆与双曲线的离心率分别为e1,e2
∴e1?e2=
c
a1
?
c
a2
=
y2
x2?y2
=
1
(
x
y
)2?1

由三角形三边关系得|F1F2|+|PF2|>|PF1|>|PF2|,
即2y>x>y,得到1<
x
y
<2,
∴1<(
x
y
2<4,∴0<(
x
y
2-1<3,
根据复合函数单调性得到e1?e2=
1
(
x
y
)2?1
1
3

故选:C.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式