一个圆锥有几条高一个圆柱有几条高
一个圆锥只有1条高,一个圆柱有无数条高.
故答案为:1,无数.
拓展资料:
圆锥是一种几何图形,有两种定义。解析几何定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。立体几何定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转360度而成的曲面所围成的几何体叫做圆锥。
旋转轴叫做圆锥的轴。 垂直于轴的边旋转而成的曲面叫做圆锥的底面。不垂直于轴的边旋转而成的曲面叫做圆锥的侧面。无论旋转到什么位置,不垂直于轴的边都叫做圆锥的母线。(边是指直角三角形两个旋转边)
圆柱(circular cylinder)是由以矩形的一条边所在直线为旋转轴,其余三边绕该旋转轴旋转一周而形成的几何体。它有2个大小相同、相互平行的圆形底面和1个曲面侧面。其侧面展开是矩形。
一个圆锥只有一条高,圆锥图形如下:
只有从顶点连接底面圆心的线段才是圆锥的唯一高线。
一个圆柱有无数条高,圆柱图形如下:
圆柱上下底面距离相同,高为无数条。
拓展资料:
1、圆锥也称为圆锥体,是三维几何体的一种,是平面上一个圆以及它的所有切线和平面外的一个定点确定的平面围成的形体。
圆形被称为圆锥的底面,平面外的定点称为圆锥的顶点或尖端,顶点到底面所在平面的距离称为圆锥的高。
通常“圆锥”一词用来指代正圆锥,也就是圆锥顶点在底面的投影是圆心时的情况。正圆锥可以定义为一个直角三角形绕其中一条直角边旋转一周得到的几何体,这个直角三角形的斜边称为圆锥的母线。
顶点在底面的投影不在圆心,这样的圆锥称为斜圆锥。正圆锥可以由平面截圆锥面得到,斜圆锥则不能。倾斜平面截取圆锥面得到的几何形体叫做椭圆锥。
一个圆锥所占空间的大小,叫做这个圆锥的体积。
一个圆锥的体积等于与它等底等高的圆柱的体积的1/3。
根据圆柱体积公式(V=Sh=πr^2*h),得出圆锥体积公式:
其中,S是底面积,h是高,r是底面半径。
2、在同一个平面内有一条定直线和一条动线,当这个平面绕着这条定直线旋转一周时,这条动线所成的面叫做旋转面,这条定直线叫做旋转面的轴,这条动线叫做旋转面的母线。
如果母线是和轴平行的一条直线,那么所生成的旋转面叫做圆柱面。
如果用垂直于轴的两个平面去截圆柱面,那么两个截面和圆柱面所围成的几何体叫做直圆柱,简称圆柱。
(1)、圆柱的侧面积=底面的周长*高
即S侧=Ch(C为底面周长,h为圆柱体的高)
(2)、圆柱的底面积=πr^2(r为底面半径)
(3)、圆柱的表面积=侧面积+两个底面积
即圆柱表面积=底面周长*(高+半径)
S柱表=2πr(r+h)
圆柱体的体积.
求圆柱的体积跟求长方体、正方体一样,都是底面积×高。
设一个圆柱底面半径为r,高为h,则体积V=πr^2h
如S为底面积,高为h,体积为V即V=Sh
一个圆锥的高只有一条,一个圆柱的高有无数条。
圆锥
圆锥也称为圆锥体,是三维几何体的一种,是平面上一个圆以及它的所有切线和平面外的一个定点确定的平面围成的形体。圆形被称为圆锥的底面,平面外的定点称为圆锥的顶点或尖端,顶点到底面所在平面的距离称为圆锥的高。通常“圆锥”一词用来指代正圆锥,也就是圆锥顶点在底面的投影是圆心时的情况。正圆锥可以定义为一个直角三角形绕其中一条直角边旋转一周得到的几何体,这个直角三角形的斜边称为圆锥的母线。顶点在底面的投影不在圆心,这样的圆锥称为斜圆锥。正圆锥可以由平面截圆锥面得到,斜圆锥则不能。倾斜平面截取圆锥面得到的几何形体叫做椭圆锥。
圆锥的高:
从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥的高只有一条。
圆柱
圆柱(circular cylinder)是由以矩形的一条边所在直线为旋转轴,其余三边绕该旋转轴旋转一周而形成的几何体。它有2个大小相同、相互平行的圆形底面和1个曲面侧面。其侧面展开是矩形。
圆柱的两个完全相同的圆面叫做底面(又分上底和下底);圆柱有一个曲面,叫做侧面;两个底面的对应点之间的距离叫做高(高有无数条)。
特征:
1、圆柱的底面都是圆,并且大小一样。
2、圆柱两个面之间的垂直距离叫做高,把圆柱的侧面打开,得到一个矩形,这个矩形的一条边就是圆柱的底面周长。
圆柱与圆锥的关系
等底等高的圆锥积是圆柱体积的三分之一。
体积和高相等的圆锥与圆柱,圆锥的底面积是圆柱的三倍。
体积和底面积相等的圆锥与圆柱,圆锥的高是圆柱的三倍。
一个圆锥有一条高:从顶点连接底面圆心的线段为圆锥的唯一高线。
一个圆柱有无数条高:圆柱上下底面距离相同,高为无数条。
拓展资料:
圆柱:在同一个平面内有一条定直线和一条动线,当这个平面绕着这条定直线旋转一周时,这条动线所成的面叫做旋转面,这条定直线叫做旋转面的轴,这条动线叫做旋转面的母线。如果母线是和轴平行的一条直线,那么所生成的旋转面叫做圆柱面。如果用垂直于轴的两个平面去截圆柱面,那么两个截面和圆柱面所围成的几何体叫做直圆柱。
圆锥:数学领域术语,有两种定义。解析几何定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。立体几何定义:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。该直角边叫圆锥的轴 。