问一道高数导数例题,求详解,涉及一些基本概念

方框里这个求导过程完全看不懂。。。求解释... 方框里这个求导过程完全看不懂。。。求解释 展开
 我来答
百度网友4b62c30
2015-07-25
知道答主
回答量:28
采纳率:0%
帮助的人:9.1万
展开全部
这个应该叫做因函数求导法则
这么解释吧
一个函数我们目前阶段(隐函数)只对一个变量求导,也就是x
dx表示求导,那么求e^y+ex-e的导数因为不需要求y的倒数但我们求了,所以要乘一个dy
就像z=z*x/x一样
那么原式求导之后就是底下的式子啦
de^y=de^y*dy
dxy=dx*y+dy*x
de=0
所以d(e^y+xy-e)=e^y*dy+y*dx+x*dy 此为一式
那么所求式为一式除以dx,得到答案,懂了吧,在线等你呦,不会的问
帐号已注销
2015-07-23 · TA获得超过1010个赞
知道小有建树答主
回答量:178
采纳率:90%
帮助的人:50.1万
展开全部
注意解里提到“注意y=y(x)”。这句话的意思是y是x的函数,因此在y对x求导时得到的答案是dy/dx。这个就是隐函数的做法,如果一开始不能理解,就先记下来,在以后做的过程中理解。
在e^y对x求导时,原本应该是得到e^y,因为e^y这个函数的导数就是本身,但是因为这里是隐函数,y是x的函数,所以要用chain rule,因此要加上前面提到的dy/dx。
在xy对x求导时,采用(ab)'=a'*b+b'*a这个积的求导公式,(xy)'=x'y+y'x=y+x*dy/dx。注意这里x'y=y是因为x'=1,因为x对x本身求导是1,而y'=dy/dx是根据y对x求导的定义。
最后,因为e是自然对数,是常数,所以(e)'=0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
hotcoal
2015-07-23 · TA获得超过1620个赞
知道小有建树答主
回答量:687
采纳率:75%
帮助的人:214万
展开全部
这是隐函数求导,通过原方程可以确定一个隐函数y=y(x),把方程当成一个恒等书,两边同时对x求导,求导过程中y要看成是x的函数,利用符合函数求导的链式法则,得到一个关于dy/dx的方程,求出dy/dx即得隐函数的导数。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友a1398f6
2015-07-24 · TA获得超过2939个赞
知道大有可为答主
回答量:2800
采纳率:63%
帮助的人:590万
展开全部
这就是符合函数对x进行求导,y是关于x是函数。
所以,(e^y)′=e^y·y′=e^y·dy/dx
(xy)′=y+xy′=y+xdy/dx
(-e)′=0
所以结果如斯
就是这么简单
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
一剑刺向太阳A
2015-07-27 · 超过33用户采纳过TA的回答
知道答主
回答量:135
采纳率:0%
帮助的人:51.8万
展开全部
隐函数求导,对e^y求导时,先对那个整体求导,注意到y是x的函数,而你的目的是求关于x的导数。所以y还要求一次导,即dy/dx.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(7)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式