已知数列{an}是各项均为正数的等比数列,且a1+a2=2*(1/a1+1/a2),a3+a4+a5= 急用,谢谢!!!
已知数列{an}是各项均为正数的等比数列,且a1+a2=2*(1/a1+1/a2),a3+a4+a5=64*(1/a3+1/a4+1/a5)(1)求{an}的通项公式(2...
已知数列{an}是各项均为正数的等比数列,且a1+a2=2*(1/a1+1/a2),a3+a4+a5=64*(1/a3+1/a4+1/a5)
(1)求{an}的通项公式
(2)设{bn}=(an+1/an)^2,求数列{bn}的前n项和Tn
急用,谢谢!!!
有谁会吗,迅速啊,急用~~~ 展开
(1)求{an}的通项公式
(2)设{bn}=(an+1/an)^2,求数列{bn}的前n项和Tn
急用,谢谢!!!
有谁会吗,迅速啊,急用~~~ 展开
1个回答
展开全部
统统写成首项a1(记作a吧)和公比q的形式:
第一式为a+aq=2(1/a+1/aq),化简的a^2=2/q;
第二式为aq^2+aq^3+aq^4=64*(1/aq^2+1/aq^3+1/aq^4);
整理得:aq^2*(1+q+q^2)=64*(1+q+q2)/(aq^4);
约分,将第一式代入消去a,得q=2,进而得a=1,所以an=2^(n-1)
bn=(an+1/an)^2=an^2+1/(an^2)+2=4^(n-1)+4^(1-n)+2
分组求和,两个等比数列,一个常数列即可;
第一式为a+aq=2(1/a+1/aq),化简的a^2=2/q;
第二式为aq^2+aq^3+aq^4=64*(1/aq^2+1/aq^3+1/aq^4);
整理得:aq^2*(1+q+q^2)=64*(1+q+q2)/(aq^4);
约分,将第一式代入消去a,得q=2,进而得a=1,所以an=2^(n-1)
bn=(an+1/an)^2=an^2+1/(an^2)+2=4^(n-1)+4^(1-n)+2
分组求和,两个等比数列,一个常数列即可;
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询