已知:集合A={(x,y)|x²+mx-y+2=0},B={(x,y)|x-y+1=0},如果A∩
已知:集合A={(x,y)|x²+mx-y+2=0},B={(x,y)|x-y+1=0},如果A∩B≠空集,求实数m的取值范围。请给出详细的解题过程,一定采纳!...
已知:集合A={(x,y)|x²+mx-y+2=0},B={(x,y)|x-y+1=0},如果A∩B≠空集,求实数m的取值范围。
请给出详细的解题过程,一定采纳! 展开
请给出详细的解题过程,一定采纳! 展开
展开全部
由题知,
集合A={(x,y)|x²+mx-y+2=0,x∈R},
集合B={(x,y)|x-y+1=0,0≤x≤2}
若A∩B≠空集
即方程组
x²+mx-y+2=0
x-y+1=0
在x∈[0,2]有公共解
两式相减,约去y得
x²+(m-1)x+1=0
要使方程在x∈[0,2]有解
首先要满足
判别式⊿=(m-1)²-4≥0
对称轴-(m-1)/2>0
所以,此时m≤-1
所以,令f(x)=x²+(m-1)x+1
f(0)=1>0
f(1)=1+m-1+1=1+m≤0
在x²+(m-1)x+1=0必有一根在[0,1]之间
所以,m≤-1
即m∈(-∞,-1]
集合A={(x,y)|x²+mx-y+2=0,x∈R},
集合B={(x,y)|x-y+1=0,0≤x≤2}
若A∩B≠空集
即方程组
x²+mx-y+2=0
x-y+1=0
在x∈[0,2]有公共解
两式相减,约去y得
x²+(m-1)x+1=0
要使方程在x∈[0,2]有解
首先要满足
判别式⊿=(m-1)²-4≥0
对称轴-(m-1)/2>0
所以,此时m≤-1
所以,令f(x)=x²+(m-1)x+1
f(0)=1>0
f(1)=1+m-1+1=1+m≤0
在x²+(m-1)x+1=0必有一根在[0,1]之间
所以,m≤-1
即m∈(-∞,-1]
展开全部
由题知,
集合A={(x,y)|x²+mx-y+2=0,x∈R},
集合B={(x,y)|x-y+1=0,0≤x≤2}
若A∩B≠空集
即方程组
x²+mx-y+2=0
x-y+1=0
在x∈[0,2]有公共解
两式相减,约去y得
x²+(m-1)x+1=0
要使方程在x∈[0,2]有解
首先要满足
判别式⊿=(m-1)²-4≥0
对称轴-(m-1)/2>0
所以,此时m≤-1
所以,令f(x)=x²+(m-1)x+1
f(0)=1>0
f(1)=1+m-1+1=1+m≤0
在x²+(m-1)x+1=0必有一根在[0,1]之间
所以,m≤-1
即m∈(-∞,-1]
集合A={(x,y)|x²+mx-y+2=0,x∈R},
集合B={(x,y)|x-y+1=0,0≤x≤2}
若A∩B≠空集
即方程组
x²+mx-y+2=0
x-y+1=0
在x∈[0,2]有公共解
两式相减,约去y得
x²+(m-1)x+1=0
要使方程在x∈[0,2]有解
首先要满足
判别式⊿=(m-1)²-4≥0
对称轴-(m-1)/2>0
所以,此时m≤-1
所以,令f(x)=x²+(m-1)x+1
f(0)=1>0
f(1)=1+m-1+1=1+m≤0
在x²+(m-1)x+1=0必有一根在[0,1]之间
所以,m≤-1
即m∈(-∞,-1]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询