线性代数里的特征多项式是什么?求其概念。
3个回答
展开全部
要理解特征多项式,首先需要了解一下特征值与特征向量,这些都是联系在一起的:
设A是n阶矩阵,如果数λ和n维非零列向量x使得关系式
Ax=λx
成立,那么,这样的数λ就称为方阵A的特征值,非零向量x称为A对应于特征值λ的特征向量。
然后,我们也就可以对关系式进行变换:
(A-λE)x=0 其中E为单位矩阵
这是n个未知数n个方程的齐次线性方程组,它有非零解的充要条件是系数行列式为0,即
|A-λE|=0
带入具体的数字或者符号,可以看出该式是以λ为未知数的一元n次方程,称为方阵A的特征方程,左端 |A-λE|是λ的n次多项式,也称为方阵A的特征多项式。
到此为止,特征多项式的定义表述完毕。
设A是n阶矩阵,如果数λ和n维非零列向量x使得关系式
Ax=λx
成立,那么,这样的数λ就称为方阵A的特征值,非零向量x称为A对应于特征值λ的特征向量。
然后,我们也就可以对关系式进行变换:
(A-λE)x=0 其中E为单位矩阵
这是n个未知数n个方程的齐次线性方程组,它有非零解的充要条件是系数行列式为0,即
|A-λE|=0
带入具体的数字或者符号,可以看出该式是以λ为未知数的一元n次方程,称为方阵A的特征方程,左端 |A-λE|是λ的n次多项式,也称为方阵A的特征多项式。
到此为止,特征多项式的定义表述完毕。
追问
复制粘贴啊
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询