2个回答
展开全部
令a-b=x>0,b-c=y>0,则a=c+x+y, b=c+y
a^2/(a-b)+b^2/(b-c)
=(c+x+y)^2/x+(c+y)^2/y
=(c^2+x^2+y^2+2cx+2cy+2xy)/x + (c^2+y^2+2cy)/y
=(c^2+y^2+2cy)/x +x+2c+2y +(c^2)/y +y+2c
=(c+y)^2/x+(c^2)/y+(4c+3y+x)
=b^2/x+c^2/y +(a+2b+c)>a+2b+c
a^2/(a-b)+b^2/(b-c)
=(c+x+y)^2/x+(c+y)^2/y
=(c^2+x^2+y^2+2cx+2cy+2xy)/x + (c^2+y^2+2cy)/y
=(c^2+y^2+2cy)/x +x+2c+2y +(c^2)/y +y+2c
=(c+y)^2/x+(c^2)/y+(4c+3y+x)
=b^2/x+c^2/y +(a+2b+c)>a+2b+c
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询