数学思想,转化和化归的区别????
3个回答
展开全部
简而言之,化归是一种目的性转化。
化归思想,将一个问题由难化易,由繁化简,由复杂化简单的过程称为化归,它是转化和归结的简称。
在解决问题的过程中,数学家往往不是直接解决原问题,而是对问题进行变形、转化,直至把它化归为某个(些)已经解决的问题,或容易解决的问题。 把所要解决的问题,经过某种变化,使之归结为另一个问题*,再通过问题*的求解,把解得结果作用于原有问题,从而使原有问题得解,这种解决问题的方法,我们称之为化归法。
化归法是一种分析问题解决问题的基本思想方法.在数学中通常的作法是:将一个非基本的问题通过分解、变形、代换…,或平移、旋转、伸缩…等多种方式,将它化归为一个熟悉的基本的问题,从而求出解答.如学完一元一次方程、因式分解等知识后,学习一元二次方程我们就是通过因式分解等方法,将它化归为一元一次方程来解的.后来我们学到特殊的一元高次方程时,又是化归为一元一次和一元二次方程来解的.对一元不等式也有类似的作法.又如在平面几何中我们在学习了三角形的内角和、面积计算等有关定理后,对n边形的内角和、面积的计算,也是通过分解、拼合为若干个三角形来加以解决的.再如在解析几何中,当我们学完了最基本、最简单的圆锥曲线知识以后,对一般圆锥曲线的研究,我们也是通过坐标轴平移或旋转,化归为基本的圆锥曲线(在新坐标系中)来实现的.其它如几何问题化归为代数问题,立体几何问题化归为平面几何问题,任意角的三角函数问题化归为锐角三角函数问题来表示的例子就更多了.所以,掌握化归的思想方法对于数学学习有着重要的意义.总之,化归的原则是以已知的、简单的、具体的、特殊的、基本的知识为基础,将未知的化为已知的,复杂的化为简单的,抽象的化为具体的,一般的化为特殊的,非基本的化为基本的,从而得出正确的解答.
化归思想,将一个问题由难化易,由繁化简,由复杂化简单的过程称为化归,它是转化和归结的简称。
在解决问题的过程中,数学家往往不是直接解决原问题,而是对问题进行变形、转化,直至把它化归为某个(些)已经解决的问题,或容易解决的问题。 把所要解决的问题,经过某种变化,使之归结为另一个问题*,再通过问题*的求解,把解得结果作用于原有问题,从而使原有问题得解,这种解决问题的方法,我们称之为化归法。
化归法是一种分析问题解决问题的基本思想方法.在数学中通常的作法是:将一个非基本的问题通过分解、变形、代换…,或平移、旋转、伸缩…等多种方式,将它化归为一个熟悉的基本的问题,从而求出解答.如学完一元一次方程、因式分解等知识后,学习一元二次方程我们就是通过因式分解等方法,将它化归为一元一次方程来解的.后来我们学到特殊的一元高次方程时,又是化归为一元一次和一元二次方程来解的.对一元不等式也有类似的作法.又如在平面几何中我们在学习了三角形的内角和、面积计算等有关定理后,对n边形的内角和、面积的计算,也是通过分解、拼合为若干个三角形来加以解决的.再如在解析几何中,当我们学完了最基本、最简单的圆锥曲线知识以后,对一般圆锥曲线的研究,我们也是通过坐标轴平移或旋转,化归为基本的圆锥曲线(在新坐标系中)来实现的.其它如几何问题化归为代数问题,立体几何问题化归为平面几何问题,任意角的三角函数问题化归为锐角三角函数问题来表示的例子就更多了.所以,掌握化归的思想方法对于数学学习有着重要的意义.总之,化归的原则是以已知的、简单的、具体的、特殊的、基本的知识为基础,将未知的化为已知的,复杂的化为简单的,抽象的化为具体的,一般的化为特殊的,非基本的化为基本的,从而得出正确的解答.
展开全部
转化与化归思想是中学数学最基本的思想方法,也是最基本的思维策略,是解决数学问题的出发点.转化与化归思想解题的原则应是化难为易、化生为熟、化繁为简、化抽象为直观,尽量是等价转化.
初中数学中常见的转化情形有:高次转化为低次、多元转化为一元、式子转化为方程、分式与整式的转化、三角形与四边形的转化、空间与平面相互转化(几何体的展开与折叠)、次元转化为主元、正面转化为反面、分散转化为集中、未知转化为已知、动转化为静、部分转化为整体,还有一般与特殊、数与形、相等与不等之间的相互转化、实际问题与数学问题的转化等等
初中数学中常见的转化情形有:高次转化为低次、多元转化为一元、式子转化为方程、分式与整式的转化、三角形与四边形的转化、空间与平面相互转化(几何体的展开与折叠)、次元转化为主元、正面转化为反面、分散转化为集中、未知转化为已知、动转化为静、部分转化为整体,还有一般与特殊、数与形、相等与不等之间的相互转化、实际问题与数学问题的转化等等
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1、
转化与化归的思想方法
转化与化归的思想方法是数学中最基本的思想方法,数学中一切问题的解决(当然包括解题)都离不开转化与化归,数形结合思想体现了数与形的相互转化;函数与方程思想体现了函数、方程、不等式间的相互转化;分类讨论思想体现了局部与整体的相互转化,以上三种思想方法都是转化与化归思想的具体体现。各种变换方法、分析法、反证法、待定系数法、构造法等都是转化的手段。所以说,转化与化归是数学思想方法的灵魂。
2、
转化包括等价转化和非等价转化,非等价转化又分为强化转化和弱化转化
等价转化要求在转化过程中的前因后果既是充分的又是必要的,这样的转化能保证转化的结果仍为原问题所需要的结果,非等价转化其过程则是充分的或必要的,这样的转化能给人带来思维的启迪,找到解决问题的突破口,非等价变形要对所得结论进行必要的修改。
非等价转化(强化转化和弱化转化)在思维上带有跳跃性,是难点,在压轴题的解答中常常用到,一定要特别重视!
3、
转化与化归的原则
将不熟悉和难解的问题转化为熟知的易解的或已经解决的问题,将抽象的问题转化为具体的直观的问题,将复杂的问题转化为简单的问题,将一般性的问题转化为直观的特殊的问题;将实际问题转化为数学问题,使问题便与解决。
4、
转化与化归的基本类型
(1)
正与反、一般与特殊的转化;
(2)
常量与变量的转化;
(3)
数与形的转化;
(4)
数学各分支之间的转化;
(5)
相等与不相等之间的转化;
(6)
实际问题与数学模型的转化。
转化与化归的思想方法
转化与化归的思想方法是数学中最基本的思想方法,数学中一切问题的解决(当然包括解题)都离不开转化与化归,数形结合思想体现了数与形的相互转化;函数与方程思想体现了函数、方程、不等式间的相互转化;分类讨论思想体现了局部与整体的相互转化,以上三种思想方法都是转化与化归思想的具体体现。各种变换方法、分析法、反证法、待定系数法、构造法等都是转化的手段。所以说,转化与化归是数学思想方法的灵魂。
2、
转化包括等价转化和非等价转化,非等价转化又分为强化转化和弱化转化
等价转化要求在转化过程中的前因后果既是充分的又是必要的,这样的转化能保证转化的结果仍为原问题所需要的结果,非等价转化其过程则是充分的或必要的,这样的转化能给人带来思维的启迪,找到解决问题的突破口,非等价变形要对所得结论进行必要的修改。
非等价转化(强化转化和弱化转化)在思维上带有跳跃性,是难点,在压轴题的解答中常常用到,一定要特别重视!
3、
转化与化归的原则
将不熟悉和难解的问题转化为熟知的易解的或已经解决的问题,将抽象的问题转化为具体的直观的问题,将复杂的问题转化为简单的问题,将一般性的问题转化为直观的特殊的问题;将实际问题转化为数学问题,使问题便与解决。
4、
转化与化归的基本类型
(1)
正与反、一般与特殊的转化;
(2)
常量与变量的转化;
(3)
数与形的转化;
(4)
数学各分支之间的转化;
(5)
相等与不相等之间的转化;
(6)
实际问题与数学模型的转化。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |