如图,在△ABC,∠ACB=90°,AC=AB,P为△ABC内的一点,且PB=1,PC=2,PA=3,求∠BPC的度数
展开全部
设AC=BC=a,根据余弦定理克表示出: COS<BCP=(a*a+2*2-1*1)/2*2*a; 同理
COS<ACP=(a*a=2*2-3*3)/2*2*a; 再利用角ACP与角BCP互余,可得: COS<BCP=SIN<ACP,就有cos<BCP的平方+COS<ACP的平方=1,即可求解出a的值。a值求解出后在三角形BCP中再代入余弦定理即可求解出<BPC的度数啦 ,个人见解,仅供参考~~O(∩_∩)O~
COS<ACP=(a*a=2*2-3*3)/2*2*a; 再利用角ACP与角BCP互余,可得: COS<BCP=SIN<ACP,就有cos<BCP的平方+COS<ACP的平方=1,即可求解出a的值。a值求解出后在三角形BCP中再代入余弦定理即可求解出<BPC的度数啦 ,个人见解,仅供参考~~O(∩_∩)O~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询