高中解三角形的题

在三角形ABC中,AB=根号6-根号2,C=30°则AC+BC的最大值是多少?要详细过程哦... 在三角形ABC中,AB=根号6-根号2,C=30°则AC+BC的最大值是多少?
要详细过程哦
展开
1192293572
2010-10-05
知道答主
回答量:4
采纳率:0%
帮助的人:0
展开全部
由正弦定理:
AB/sinC=2(√6+√2)=AC/sinB=BC/sinA
AC=2(√6+√2)sinB
BC=2(√6+√2)sinA
AC+BC=2(√6+√2)(sinA+sinB)
=2(√6+√2)*2sin[(A+B)/2]cos[(A-B)/2]
=2(√6+√2)*2sin75 cos[(A-B)/2]
=(√6+√2)^2 cos[(A-B)/2]
当 cos[(A-B)/2]=1,即A=B时,
最大值是(√6+√2)^2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式