奥数题1+1/1+2+1/1+2+3+1/1+2+3+4+……+1/1+2+3+4+5+……100
7个回答
2013-01-06
展开全部
1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+……+1/(1+2+3……+n)
= 1+1/[(1+2)×2÷2]+1/[(1+3)×3÷2]+……+1/[(1+n)×n÷2]——①
= 2/2+2/(1+2)×2+2/(1+3)×3+……+2/(1+n)×n——②
= 2×[1/2+1/2-1/3+1/3-1/4+……+1/n-1/(1+n)]——③
= 2×[1-1/(1+n)]
= 2×[n/(1+n)]
= 2n/(1+n)
∵此题中n为100,∴带入即可得到200/101
= 1+1/[(1+2)×2÷2]+1/[(1+3)×3÷2]+……+1/[(1+n)×n÷2]——①
= 2/2+2/(1+2)×2+2/(1+3)×3+……+2/(1+n)×n——②
= 2×[1/2+1/2-1/3+1/3-1/4+……+1/n-1/(1+n)]——③
= 2×[1-1/(1+n)]
= 2×[n/(1+n)]
= 2n/(1+n)
∵此题中n为100,∴带入即可得到200/101
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+……+1/(1+2+3……+100)
= 1+1/[(1+2)×2÷2]+1/[(1+3)×3÷2]+……+1/[(1+100)×100÷2]
= 2/2+2/(1+2)×2+2/(1+3)×3+……+2/(1+100)×100
= 2×[1/2+1/2-1/3+1/3-1/4+……+1/100-1/(1+100)]
= 2×[1-1/(1+100)]
= 2×[100/(1+100)]
= 2100/(1+100)
= 1+1/[(1+2)×2÷2]+1/[(1+3)×3÷2]+……+1/[(1+100)×100÷2]
= 2/2+2/(1+2)×2+2/(1+3)×3+……+2/(1+100)×100
= 2×[1/2+1/2-1/3+1/3-1/4+……+1/100-1/(1+100)]
= 2×[1-1/(1+100)]
= 2×[100/(1+100)]
= 2100/(1+100)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询