AB是圆O的直径,C是圆O上的一点,连结AC,过C作直线CD垂直于AB,垂足为D(AD小于DB)

AB是圆O的直径,C是圆O上的一点,连结AC,过C作直线CD垂直于AB,垂足为D(AD小于DB),点E是线段DB上任意一点,直线CE交圆O于点F,连结AF,与直线CD交于... AB是圆O的直径,C是圆O上的一点,连结AC,过C作直线CD垂直于AB,垂足为D(AD小于DB),点E是线段DB上任意一点,直线CE交圆O于点F,连结AF,与直线CD交于点G。求证:AC平方=AG*AF;若点E是线段AD上的任意一点,上述结论是否仍然成立?若成立给予证明,不成立说明理由。 展开
江苏吴雲超
2010-10-06
江苏吴雲超
采纳数:5597 获赞数:116321
年近退休,开心为主.

向TA提问 私信TA
展开全部

证明:

如图1,连接BC、BF

因为AB是直径

所以∠ACB=∠AFB=90°

因为CD⊥AB

所以∠ADC=∠ADG=90°

所以∠ACB=∠ADC,∠AFB=∠ADG

又因为∠CAD=∠BAC,∠DAG=∠FBA

所以△ACD∽△ABC,△ADG∽△AFB

所以AC/AB=AD/AC,AD/AF=AG/AB

所以AC^2=AD*AB,AD*AB=AG*AF

所以AC^2=AG*AF

若点E是线段AD上的任意一点,上述结论仍然成立

证明(与上面过程一样):

如图2,连接BC、BF

因为AB是直径

所以∠ACB=∠AFB=90°

因为CD⊥AB

所以∠ADC=∠ADG=90°

所以∠ACB=∠ADC,∠AFB=∠ADG

又因为∠CAD=∠BAC,∠DAG=∠FBA

所以△ACD∽△ABC,△ADG∽△AFB

所以AC/AB=AD/AC,AD/AF=AG/AB

所以AC^2=AD*AB,AD*AB=AG*AF

所以AC^2=AG*AF

供参考!JSWYC

参考资料: http://hi.baidu.com/jswyc/blog/item/d649b2839b1719b16c811992.html

王家子弟之大少
2012-06-04
知道答主
回答量:22
采纳率:0%
帮助的人:3.5万
展开全部
证明:
如图1,连接BC、BF
因为AB是直径
所以∠ACB=∠AFB=90°
因为CD⊥AB
所以∠ADC=∠ADG=90°
所以∠ACB=∠ADC,∠AFB=∠ADG
又因为∠CAD=∠BAC,∠DAG=∠FBA
所以△ACD∽△ABC,△ADG∽△AFB
所以AC/AB=AD/AC,AD/AF=AG/AB
所以AC^2=AD*AB,AD*AB=AG*AF
所以AC^2=AG*AF
若点E是线段AD上的任意一点,上述结论仍然成立
证明(与上面过程一样):
如图2,连接BC、BF
因为AB是直径
所以∠ACB=∠AFB=90°
因为CD⊥AB
所以∠ADC=∠ADG=90°
所以∠ACB=∠ADC,∠AFB=∠ADG
又因为∠CAD=∠BAC,∠DAG=∠FBA
所以△ACD∽△ABC,△ADG∽△AFB
所以AC/AB=AD/AC,AD/AF=AG/AB
所以AC^2=AD*AB,AD*AB=AG*AF
所以AC^2=AG*AF
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式