AB是圆O的直径,C是圆O上的一点,连结AC,过C作直线CD垂直于AB,垂足为D(AD小于DB)
AB是圆O的直径,C是圆O上的一点,连结AC,过C作直线CD垂直于AB,垂足为D(AD小于DB),点E是线段DB上任意一点,直线CE交圆O于点F,连结AF,与直线CD交于...
AB是圆O的直径,C是圆O上的一点,连结AC,过C作直线CD垂直于AB,垂足为D(AD小于DB),点E是线段DB上任意一点,直线CE交圆O于点F,连结AF,与直线CD交于点G。求证:AC平方=AG*AF;若点E是线段AD上的任意一点,上述结论是否仍然成立?若成立给予证明,不成立说明理由。
展开
2个回答
展开全部
证明:
如图1,连接BC、BF
因为AB是直径
所以∠ACB=∠AFB=90°
因为CD⊥AB
所以∠ADC=∠ADG=90°
所以∠ACB=∠ADC,∠AFB=∠ADG
又因为∠CAD=∠BAC,∠DAG=∠FBA
所以△ACD∽△ABC,△ADG∽△AFB
所以AC/AB=AD/AC,AD/AF=AG/AB
所以AC^2=AD*AB,AD*AB=AG*AF
所以AC^2=AG*AF
若点E是线段AD上的任意一点,上述结论仍然成立
证明(与上面过程一样):
如图2,连接BC、BF
因为AB是直径
所以∠ACB=∠AFB=90°
因为CD⊥AB
所以∠ADC=∠ADG=90°
所以∠ACB=∠ADC,∠AFB=∠ADG
又因为∠CAD=∠BAC,∠DAG=∠FBA
所以△ACD∽△ABC,△ADG∽△AFB
所以AC/AB=AD/AC,AD/AF=AG/AB
所以AC^2=AD*AB,AD*AB=AG*AF
所以AC^2=AG*AF
供参考!JSWYC
参考资料: http://hi.baidu.com/jswyc/blog/item/d649b2839b1719b16c811992.html
展开全部
证明:
如图1,连接BC、BF
因为AB是直径
所以∠ACB=∠AFB=90°
因为CD⊥AB
所以∠ADC=∠ADG=90°
所以∠ACB=∠ADC,∠AFB=∠ADG
又因为∠CAD=∠BAC,∠DAG=∠FBA
所以△ACD∽△ABC,△ADG∽△AFB
所以AC/AB=AD/AC,AD/AF=AG/AB
所以AC^2=AD*AB,AD*AB=AG*AF
所以AC^2=AG*AF
若点E是线段AD上的任意一点,上述结论仍然成立
证明(与上面过程一样):
如图2,连接BC、BF
因为AB是直径
所以∠ACB=∠AFB=90°
因为CD⊥AB
所以∠ADC=∠ADG=90°
所以∠ACB=∠ADC,∠AFB=∠ADG
又因为∠CAD=∠BAC,∠DAG=∠FBA
所以△ACD∽△ABC,△ADG∽△AFB
所以AC/AB=AD/AC,AD/AF=AG/AB
所以AC^2=AD*AB,AD*AB=AG*AF
所以AC^2=AG*AF
如图1,连接BC、BF
因为AB是直径
所以∠ACB=∠AFB=90°
因为CD⊥AB
所以∠ADC=∠ADG=90°
所以∠ACB=∠ADC,∠AFB=∠ADG
又因为∠CAD=∠BAC,∠DAG=∠FBA
所以△ACD∽△ABC,△ADG∽△AFB
所以AC/AB=AD/AC,AD/AF=AG/AB
所以AC^2=AD*AB,AD*AB=AG*AF
所以AC^2=AG*AF
若点E是线段AD上的任意一点,上述结论仍然成立
证明(与上面过程一样):
如图2,连接BC、BF
因为AB是直径
所以∠ACB=∠AFB=90°
因为CD⊥AB
所以∠ADC=∠ADG=90°
所以∠ACB=∠ADC,∠AFB=∠ADG
又因为∠CAD=∠BAC,∠DAG=∠FBA
所以△ACD∽△ABC,△ADG∽△AFB
所以AC/AB=AD/AC,AD/AF=AG/AB
所以AC^2=AD*AB,AD*AB=AG*AF
所以AC^2=AG*AF
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询