初等数论的初等数论内容

 我来答
泪兮9Jd6JH
2016-05-14 · TA获得超过495个赞
知道答主
回答量:190
采纳率:75%
帮助的人:53.8万
展开全部

初等数论有以下几部分内容:
1.整除理论。引入整除、因数、倍数、质数与合数等基本概念。这一理论的主要成果有:唯一分解定理、裴蜀定理、欧几里德的辗转相除法、算术基本定理、素数个数无限证明。
2.同余理论。主要出自于高斯的《算术研究》内容。定义了同余、原根、指数、平方剩余、同余方程等概念。主要成果:二次互反律、欧拉定理、费马小定理、威尔逊定理、孙子定理(即中国剩余定理)等等。
3.连分数理论。引入了连分数概念和算法等等。特别是研究了整数平方根的连分数展开。主要成果:循环连分数展开、最佳逼近问题、佩尔方程求解。
4.不定方程。主要研究了低次代数曲线对应的不定方程,比如勾股方程的商高定理、佩尔方程的连分数求解。也包括了四次费马方程的求解问题等等。
5.数论函数。比如欧拉函数、莫比乌斯变换等等。
6.高斯函数。 第一个层次叫做数学概念,是反映对象的本质属性的思维形式。人类在认识过程中,从感性认识上升到理性认识,把所感知的事物的共同本质特点抽象出来,加以概括,就成为概念。表达概念的语言形式是词或词组。科学概念,特别是数学概念要求更加严格,至少必须具备三个条件:专一性,精确性,可以检验。例如:”孪生素数“就是一个数学概念。
第二个层次叫做数学命题,数学命题是对一系列数学概念之间的关系作出判断的句子。一个命题要么真,要么不真(这由逻辑中的排中律保证)。真命题包含定理,引理,推论,事实等。命题既可以是存在性命题(表述为”存在......."),也可以是全称命题(表述为“对于一切.....")。  第三个层次叫做数学理论,把方法,公式,公理,定理,原理,组合成为一个体系叫做数学理论。例如“初等数论”,由公理(例如等量公理),定理(例如费马小定理),原理(例如抽屉原理,一一对应原理),公式等组成。  在数学证明时,全称命题常常不能通过枚举法来判断真伪,这是因为数学有时面对的是无穷多个对象,永远不可能一一枚举出每一种情况。不完全归纳法在数学中是不可行的,数学只承认演绎逻辑(数学归纳法,超限归纳法等均属于演绎逻辑)。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式