急!!两道高中数学题

1.已知函数f(x)=2sinwx(w>0)在区间[-pai/3,pai/4]上的最小值是-2,则w的最小值等于______2.设f(x)=|2-x^2|,若a<b<0,... 1.已知函数f(x)=2sinwx(w>0)在区间[-pai/3,pai/4]上的最小值是-2,则w的最小值等于______
2.设f(x)=|2-x^2|,若a<b<0,且f(a)=f(b),则ab的取值范围是________
1.3/2 2.(0,2)
详细解释
展开
Miss丶小紫
2010-10-06 · TA获得超过2.2万个赞
知道大有可为答主
回答量:2173
采纳率:100%
帮助的人:1374万
展开全部
(1)解:
∵最小值为-2,∴顶点在区间内
又∵|-π/3|>|π/4|,w>0,∴最小值至少有一个存在于[-π/3,0)内
即-π/3≤x<0,则-wπ/3≤wx<0
即-wπ/3≤-π/2+2kπ<0,k∈Z
即-w/3≤-1/2+2k<0,k∈Z
∴-1/2+2k<0,即k<1/4,∵k∈Z,∴k≤0
又∵-w/3≤-1/2+2k
∴w≥3/2-6k
∵k≤0
∴w≥3/2
即w最小值为3/2

(2).解:
当-√2<x<0时,f(x)=2-x²
当x<-√2时,f(x)=x²-2
∵a<b<0,且f(a)=f(b)
∴a<-√2<b<0
即a²-2=2-b²
即a²+b²=4
∵-a>0,-b>0
∴0<(-a)(-b)≤[(-a)²+(-b)²]/2=2 .....//注:只有在2个数都是正数的情况下,不等式才成立,所以取(-a),(-b)
又∵(-a)始终≠(-b),∴等号不成立
即ab<2
∴0<ab<2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式