求5 6两道题的解
5.
令x-1=sint,则x=1+sint
x:0→2,则t:-π/2→π/2
∫[0:2]x√(2x-x²)dx
=∫[-π/2:π/2](1+sint)√(1-sin²t)d(1+sint)
=∫[-π/2:π/2](1+sint)·cos²tdt
=∫[-π/2:π/2]cos²tdt+∫[-π/2:π/2]sint·cos²tdt
=∫[0:π/2](1+cos2t)dt +0
=(t+½sin2t)|[0:π/2]
=π/2+½sinπ-0-½sin0
=π/2
6.
令√x=u,则x=u²
x:0→t²,则u:0→t
∫[0:t²](sin√x/t³)dx
=(1/t³)∫[0:t]sinud(u²)
=(2/t³)∫[0:t]usinudu
=(-2/t³)∫[0:t]ud(cosu)
=(-2/t³)ucosu|[0:t]+(2/t³)∫[0:t]cosudu
=(-2/t³)(tcost-0)+(2/t³)sinu|[0:t]
=-2cost/t²+(2/t³)(sint-0)
=2(sint-tcost)/t³
lim ∫[0:t²](sin√x/t³)dx
t→0
=lim 2(sint-tcost)/t³
t→0
=lim 2(cost-cost+tsint)/(3t²)
t→0
=lim 2t²/(3t²)
t→0
=⅔