在四边形ABCD中,点E是AB边上一点,EC//AD,DE//CB,若S△BEC=1,S△ADE=3,则S△CDE=____

玉清墨
2012-05-08
知道答主
回答量:2
采纳率:0%
帮助的人:5.6万
展开全部
解:过A作AF⊥DE于F 过E作EG⊥CB于G
∵EC∥AD
DE∥BC
E在AB上
∴△BCE∽△EDA
∴DE/CB=AF/EG=√(S△ade/S△bce)= √3
∴DE=√3CB AF=√3EG
∵DE∥BC
EG⊥CB
∴EG⊥DE
即EG为△CED的高
∵S△ADE=AF×ED×1/2=6
∴S△CED=EG×DE×1/2
=(√3AF)/3 × ED × 1/2
=(6×√3)/6
=√3
过程复杂了些,其实还能简化,不过希望能帮上忙
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式