
在四边形ABCD中,点E是AB边上一点,EC//AD,DE//CB,若S△BEC=1,S△ADE=3,则S△CDE=____
展开全部
解:过A作AF⊥DE于F 过E作EG⊥CB于G
∵EC∥AD
DE∥BC
E在AB上
∴△BCE∽△EDA
∴DE/CB=AF/EG=√(S△ade/S△bce)= √3
∴DE=√3CB AF=√3EG
∵DE∥BC
EG⊥CB
∴EG⊥DE
即EG为△CED的高
∵S△ADE=AF×ED×1/2=6
∴S△CED=EG×DE×1/2
=(√3AF)/3 × ED × 1/2
=(6×√3)/6
=√3
过程复杂了些,其实还能简化,不过希望能帮上忙
∵EC∥AD
DE∥BC
E在AB上
∴△BCE∽△EDA
∴DE/CB=AF/EG=√(S△ade/S△bce)= √3
∴DE=√3CB AF=√3EG
∵DE∥BC
EG⊥CB
∴EG⊥DE
即EG为△CED的高
∵S△ADE=AF×ED×1/2=6
∴S△CED=EG×DE×1/2
=(√3AF)/3 × ED × 1/2
=(6×√3)/6
=√3
过程复杂了些,其实还能简化,不过希望能帮上忙
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询