一道积分的题目
3个回答
展开全部
解:分享一种解法。
设 I1=∫(-1/2,1/2)cos(2πt+θ)e^(-jωt)dt,I2=∫(-1/2,1/2)sin(2πt+θ)e^(-jωt)dt,则
I=I1+jI2=∫(-1/2,1/2)e^[j(2πt-ωt+θ)]dt=[e^(jθ)]∫(-1/2,1/2)e^[j(2π-ω)t]dt=[e^(jθ)]{e^[j(2π-ω)/2]-e^[-j(2π-ω)/2]}/[j(2π-ω)],
∴I=[e^(jθ)]{-e^[-jω/2]+e^[jω/2]}/[j(2π-ω)]=[e^(jθ)][(2j)sin(ω/2)]/[j(2π-ω)]=[e^(jθ)][2sin(ω/2)]/(2π-ω),∴I1=2[(cosθ)sin(ω/2)]/(2π-ω)。
∴原式=2I1=4[(cosθ)sin(ω/2)]/(2π-ω)。
供参考。
设 I1=∫(-1/2,1/2)cos(2πt+θ)e^(-jωt)dt,I2=∫(-1/2,1/2)sin(2πt+θ)e^(-jωt)dt,则
I=I1+jI2=∫(-1/2,1/2)e^[j(2πt-ωt+θ)]dt=[e^(jθ)]∫(-1/2,1/2)e^[j(2π-ω)t]dt=[e^(jθ)]{e^[j(2π-ω)/2]-e^[-j(2π-ω)/2]}/[j(2π-ω)],
∴I=[e^(jθ)]{-e^[-jω/2]+e^[jω/2]}/[j(2π-ω)]=[e^(jθ)][(2j)sin(ω/2)]/[j(2π-ω)]=[e^(jθ)][2sin(ω/2)]/(2π-ω),∴I1=2[(cosθ)sin(ω/2)]/(2π-ω)。
∴原式=2I1=4[(cosθ)sin(ω/2)]/(2π-ω)。
供参考。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
用换元积分计算
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询