已知f(x)是定义在R上的函数,对于任意的x,y属于R,都有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于0。

判断函数的奇偶性... 判断函数的奇偶性 展开
985261137
2010-10-05 · TA获得超过121个赞
知道答主
回答量:32
采纳率:0%
帮助的人:60.2万
展开全部
f(0+0)+f(0-0)=2f(0)f(0),且f(0)不等于0,得f(0)=1所以不是奇函数,又f(x+x)+f(x-x)=2f(x)f(x),f(x-x)+f(x+x)=2f(x)f(-x),得2f(x)f(x)=2f(x)f(-x),又f(x)不恒为零,所以f(x)=f(-x),函数为偶函数
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式