25和40的最大公因数
25和40的最大公因数是5。
解答过程如下:
25的因数有(1,5,25,)
40的因数有(1,2,4,5,8,10,20,40)
他们的公因数是1,5,所以25和40的最大公因数是5。
扩展资料
最大公因数的求法:
1、质因数分解法:把每个数分别分解质因数,再把各数中的全部公有质因数提取出来连乘,所得的积就是这几个数的最大公约数。
2、短除法:短除法求最大公约数,先用这几个数的公约数连续去除,一直除到所有的商互质为止,然后把所有的除数连乘起来,所得的积就是这几个数的最大公约数。
3、辗转相除法:辗转相除法是求两个自然数的最大公约数的一种方法,也叫欧几里德算法。
4、更相减损法:也叫更相减损术,是出自《九章算术》的一种求最大公约数的算法,它原本是为约分而设计的,但它适用于任何需要求最大公约数的场合。
25和40的最大公因数:5
附:求最大公因数的方法和步骤:
1,写因数。先写出各自的因数,再找到公有的因数,再找到最大公因数。这是新版本中最基础的方法。
2,用图形。先写出公有的因数,再分别写出各自的因数。
3,分解质因数。先分别分解质因数,再找到公有的质因数,如果是两个以上就要把公有的质因数相乘,积就是最大公因数;如果只有一个,那这个质因数就是几个数的最大公因数。
4,断除法。利用断除法求几个数的最大公因数。先写数字,然后用它们的质因数做除数,直到商为互质数为止。(左边的2、2、3就是除数,下面的2.、3就是商)如果除数是一个,那这个就是几个数的最大公因数,如果除数是两个以上,那除数相乘的积就是几个数的最大公因数。
5,选优。以上四种方法都可以求出几个数的最大公因数,但是方法有优劣。第一种容易懂,但是做起来很麻烦。最快的是断除法,所以本人建议学好断除法和分解质因数的方法,这样在解决问题的时候做题的效率会很高。
25=5×5
40=2×2×2×5