微分方程 dy/dx=e^(x+ y)的通解
展开全部
常微分方程dy/dx=e^(x-y)的通解为ln(e^x+c1)。
解答过程如下:
dy/dx=e^x/e^y
e^ydy=e^xdx
e^y=e^x+c1
y=ln(e^x+c1)
一阶微分方程的普遍形式
一般形式:F(x,y,y')=0
标准形式:y'=f(x,y)
主要的一阶微分方程的具体形式
扩展资料
约束条件
微分方程的约束条件是指其解需符合的条件,依常微分方程及偏微分方程的不同,有不同的约束条件。
常微分方程常见的约束条件是函数在特定点的值,若是高阶的微分方程,会加上其各阶导数的值,有这类约束条件的常微分方程称为初值问题。
若是二阶的常微分方程,也可能会指定函数在二个特定点的值,此时的问题即为边界值问题。若边界条件指定二点数值,称为狄利克雷边界条件(第一类边值条件),此外也有指定二个特定点上导数的边界条件,称为诺伊曼边界条件(第二类边值条件)等。
展开全部
xdy+dx=e^y dx
xdy=(e^y-1)dx
dy/(e^y-1)=dx/x
[-(e^y-1)+e^y]dy/(e^y-1)=dx/x
-dy+e^ydy/(e^y-1)=dx/x
∫[-1+(e^y/(e^y-1)]dy=∫1/x dx+c1
-y+ln(e^y-1)=lnx+ln(e^c1)
-y+ln(e^y-1)=lncx
-y=lncx-ln(e^y-1)
y=ln(e^y-1)-lncx
=ln[(e^y-1)/cx]
e^y=(e^y-1)/cx
e^y*cx=e^y-1
e^y-1=Cxe^y 所以结果正确。
xdy=(e^y-1)dx
dy/(e^y-1)=dx/x
[-(e^y-1)+e^y]dy/(e^y-1)=dx/x
-dy+e^ydy/(e^y-1)=dx/x
∫[-1+(e^y/(e^y-1)]dy=∫1/x dx+c1
-y+ln(e^y-1)=lnx+ln(e^c1)
-y+ln(e^y-1)=lncx
-y=lncx-ln(e^y-1)
y=ln(e^y-1)-lncx
=ln[(e^y-1)/cx]
e^y=(e^y-1)/cx
e^y*cx=e^y-1
e^y-1=Cxe^y 所以结果正确。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
dy/dx=e^(x+y)=e^x*e^y
所以
dy/e^y=e^xdx
即e^(-y)dy=e^xdx
所以-e^y=e^x-C
所以e^y=C-e^x
所以y=ln(C-e^x)
所以
dy/e^y=e^xdx
即e^(-y)dy=e^xdx
所以-e^y=e^x-C
所以e^y=C-e^x
所以y=ln(C-e^x)
更多追问追答
追问
-c?
追答
C和-C是一样的,所以这样写好看些
通解应该写成y=f(x)的形式
采纳吧
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
dy/dx=e^x/e^y
e^ydy=e^xdx
e^y=e^x+c1
y=ln(e^x+c1)
e^ydy=e^xdx
e^y=e^x+c1
y=ln(e^x+c1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询