一道数学函数题

设函数f(x)=t-1/x(t>0,x>0),(1)判断并证明f(x)在(0.,+∞)上的单调性(2)如果f(x)在[a,b]上值域是[a,b],求t的取值范围及a、b的... 设函数f(x)=t-1/x(t>0,x>0),
(1)判断并证明f(x)在(0.,+∞)上的单调性
(2)如果f(x)在[a,b]上值域是[a,b],求t的取值范围及a、b的值
(3)如果f(x)≤4x在x∈[1,+∞)上恒成立,求实数t的取值范围
展开
min1234tb
2010-10-06 · TA获得超过2287个赞
知道小有建树答主
回答量:504
采纳率:0%
帮助的人:256万
展开全部
(1)
判断:x>0,1/x减函数,-1/x减函数,从而f(x)在(0, +∞)上单调增。
按定义验证即可,易证当0<x1<x2时, f(x1)<f(x2).
(2)
由(1)知,0<a<b,且f(a)=a,f(b)=b.
得到t=a+1/a=b+1/b>=2, (正数均值不等式)
则a=1/b, 1/a=b,
于是,0<a<1<b,且a=1/b。
(3)
当x=1时,f(1)=t-1≤4,得t≤5.
当x>1, 在点(x,y)y=f(x)的斜率f'(x)=1/x^2<1;y=4x的斜率为4.
即x>1时, 4x比f(x)增加得更快。
综上,t≤5.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式