
求解一道数学题
已知抛物线y=ax^2+bx经过点A(-3,-3)和点P(t,0),且t≠0。求使抛物线开口向下的t的取值范围。最好有详细过程。谢谢啦!...
已知抛物线y=ax^2+bx经过点A(-3,-3)和点P(t,0),且t≠0。求使抛物线开口向下的t的取值范围。
最好有详细过程。谢谢啦! 展开
最好有详细过程。谢谢啦! 展开
1个回答
展开全部
两个点代入,at^2+bt=o(t不为0)得t=-b/a
9a-3b=-3得b=3a+1,所以t=(-3a-1)/a=-3-1/a
由题意,a<0,t的范围为(-3,0)U(0,+∞)
不懂或解错再联系,对就记得加分哈
9a-3b=-3得b=3a+1,所以t=(-3a-1)/a=-3-1/a
由题意,a<0,t的范围为(-3,0)U(0,+∞)
不懂或解错再联系,对就记得加分哈
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |