1个回答
展开全部
令g(x)=f(x)+lnx-(a+1),则g(1)=f(1)+ln1-(a+1)=0,
g'(x)=f'(x)+1/x=e^(x-1)+a+1/x,又a≥-2
∴g'(1)=e^(1-1)+a+1/1≥0,
对g'(x)=e^(x-1)+a+1/x再求导,得到
d[g'(x)]/dx=e^(x-1)-1/x^2,
当x>1时e^(x-1)>1,1/x^2<1,
∴d[g'(x)]/dx>0,g'(x)在[1,+∞)单调递增
即当x>1时,g'(x)>g'(1)>0,
∴x≥1时,g(x)单调递增
g(x)=f(x)+lnx-(a+1)≥g(1)=0
即f(x)+lnx≥a+1
g'(x)=f'(x)+1/x=e^(x-1)+a+1/x,又a≥-2
∴g'(1)=e^(1-1)+a+1/1≥0,
对g'(x)=e^(x-1)+a+1/x再求导,得到
d[g'(x)]/dx=e^(x-1)-1/x^2,
当x>1时e^(x-1)>1,1/x^2<1,
∴d[g'(x)]/dx>0,g'(x)在[1,+∞)单调递增
即当x>1时,g'(x)>g'(1)>0,
∴x≥1时,g(x)单调递增
g(x)=f(x)+lnx-(a+1)≥g(1)=0
即f(x)+lnx≥a+1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询