已知等边三角形ABC和点P,设点P到三角形ABC边的AB AC BC 的距离分别是h1 h2 h3,
已知等边三角形ABC和点P,设点P到三角形ABC边的ABACBC的距离分别是h1h2h3,三角形ABC的高为h。若点P在一边BC上,此时h=0,可得结论h1+h2+h3=...
已知等边三角形ABC和点P,设点P到三角形ABC边的AB AC BC 的距离分别是h1 h2 h3,三角形ABC的高为h。若点P在一边BC上,此时h=0,可得结论h1+h2+h3=h,请你探索以下问题: 当点P在三角形ABC内和点P在三角形ABC外这两种情况时,h1 h2 h3 于h之间有怎样的关系?
展开
4个回答
展开全部
(1)当P为△ABC内一点时
连接P与各顶点
得△PAB,△PAC,△PBC.
此3个△的面积和等于△ABC的面积;
而△PAB=1/2*a*h1
△PAC=1/2*a*h2
△PBC=1/2*a*h3
△ABC=1/2*a*h,
又因S△PAB+S△PAC+S△PBC=S△ABC,即
1/2*a*h1+1/2*a*h2+1/2*a*h3=1/2*a*h;
化简,得:h1+h2+h3=h.
(2)当P为△ABC外一点时,
方法同上,可得:h1+h2+h3>h.
也可以分别讨论点P的具体位置(例如:AB的一侧或AB的延长线上等等),根据△的面积关系,可得出具体的数量关系(例如:h1+h2-h3=h等等)
连接P与各顶点
得△PAB,△PAC,△PBC.
此3个△的面积和等于△ABC的面积;
而△PAB=1/2*a*h1
△PAC=1/2*a*h2
△PBC=1/2*a*h3
△ABC=1/2*a*h,
又因S△PAB+S△PAC+S△PBC=S△ABC,即
1/2*a*h1+1/2*a*h2+1/2*a*h3=1/2*a*h;
化简,得:h1+h2+h3=h.
(2)当P为△ABC外一点时,
方法同上,可得:h1+h2+h3>h.
也可以分别讨论点P的具体位置(例如:AB的一侧或AB的延长线上等等),根据△的面积关系,可得出具体的数量关系(例如:h1+h2-h3=h等等)
展开全部
(1)当P为△ABC内一点时
连接P与各顶点
得△PAB,△PAC,△PBC.
此3个△的面积和等于△ABC的面积;
而△PAB=1/2*a*h1
△PAC=1/2*a*h2
△PBC=1/2*a*h3
△ABC=1/2*a*h,
又因S△PAB+S△PAC+S△PBC=S△ABC,即
1/2*a*h1+1/2*a*h2+1/2*a*h3=1/2*a*h;
化简,得:h1+h2+h3=h.
(2)当P为△ABC外一点时,
方法同上,可得:h1+h2+h3>h.
也可以分别讨论点P的具体位置(例如:AB的一侧或AB的延长线上等等),根据△的面积关系,可得出具体的数量关系(例如:h1+h2-h3=h等等)
楼上的对啦!把他评为最佳答案吧!我不介意···真的
连接P与各顶点
得△PAB,△PAC,△PBC.
此3个△的面积和等于△ABC的面积;
而△PAB=1/2*a*h1
△PAC=1/2*a*h2
△PBC=1/2*a*h3
△ABC=1/2*a*h,
又因S△PAB+S△PAC+S△PBC=S△ABC,即
1/2*a*h1+1/2*a*h2+1/2*a*h3=1/2*a*h;
化简,得:h1+h2+h3=h.
(2)当P为△ABC外一点时,
方法同上,可得:h1+h2+h3>h.
也可以分别讨论点P的具体位置(例如:AB的一侧或AB的延长线上等等),根据△的面积关系,可得出具体的数量关系(例如:h1+h2-h3=h等等)
楼上的对啦!把他评为最佳答案吧!我不介意···真的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:①(1)h=h1+h2,理由如下:
连接AP,则 S△ABC=S△ABP+S△APC
∴12BC•AM=12AB•PD+12AC•PF
即12BC•h=12AB•h1+12AC•h2
又∵△ABC是等边三角形
∴BC=AB=AC,
∴h=h1+h2.
②当点P在△ABC内时,结论成立.证明如下:
如图2,连接PA,PB,PC
∵S△PAB+S△PAC+S△PBC=S△ABC
∴12AB•h1+
12AC•h2+
12BC•h3=12BC•h
∵△ABC是等边三角形
∴AB=AC=BC,
∴h1+h2+h3=h
当点P在△ABC外时,结论不成立,
理由如下:如图(3)连接PB,PC,PA
由三角形的面积公式得:S△ABC=S△PAB+S△PAC-S△PBC,
即12BC•AM=12AB•PD+12AC•PE-12BC•PF,
∵AB=BC=AC,
∴h1+h2-h3=h.
连接AP,则 S△ABC=S△ABP+S△APC
∴12BC•AM=12AB•PD+12AC•PF
即12BC•h=12AB•h1+12AC•h2
又∵△ABC是等边三角形
∴BC=AB=AC,
∴h=h1+h2.
②当点P在△ABC内时,结论成立.证明如下:
如图2,连接PA,PB,PC
∵S△PAB+S△PAC+S△PBC=S△ABC
∴12AB•h1+
12AC•h2+
12BC•h3=12BC•h
∵△ABC是等边三角形
∴AB=AC=BC,
∴h1+h2+h3=h
当点P在△ABC外时,结论不成立,
理由如下:如图(3)连接PB,PC,PA
由三角形的面积公式得:S△ABC=S△PAB+S△PAC-S△PBC,
即12BC•AM=12AB•PD+12AC•PE-12BC•PF,
∵AB=BC=AC,
∴h1+h2-h3=h.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)当P为△ABC内一点时
连接P与各顶点
得△PAB,△PAC,△PBC.
此3个△的面积和等于△ABC的面积;
而△PAB=1/2*a*h1
△PAC=1/2*a*h2
△PBC=1/2*a*h3
△ABC=1/2*a*h,
又因S△PAB+S△PAC+S△PBC=S△ABC,即
1/2*a*h1+1/2*a*h2+1/2*a*h3=1/2*a*h;
化简,得:h1+h2+h3=h.
(2)当P为△ABC外一点时,
方法同上,可得:h1+h2+h3>h.
也可以分别讨论点P的具体位置(例如:AB的一侧或AB的延长线上等等),根据△的面积关系,可得出具体的数量关系(例如:h1+h2-h3=h等等)
连接P与各顶点
得△PAB,△PAC,△PBC.
此3个△的面积和等于△ABC的面积;
而△PAB=1/2*a*h1
△PAC=1/2*a*h2
△PBC=1/2*a*h3
△ABC=1/2*a*h,
又因S△PAB+S△PAC+S△PBC=S△ABC,即
1/2*a*h1+1/2*a*h2+1/2*a*h3=1/2*a*h;
化简,得:h1+h2+h3=h.
(2)当P为△ABC外一点时,
方法同上,可得:h1+h2+h3>h.
也可以分别讨论点P的具体位置(例如:AB的一侧或AB的延长线上等等),根据△的面积关系,可得出具体的数量关系(例如:h1+h2-h3=h等等)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |