解稀疏对称复线性方程组一般用什么方法能快速求解

 我来答
卷漾户6668
2017-07-23 · TA获得超过234个赞
知道答主
回答量:354
采纳率:0%
帮助的人:166万
展开全部
你所谓的直接法是不是Ax=b ==> x=A^(-1)b? 如果是,对较大的(尤其是大而稀疏)的矩阵,一般这方法都不是好的选择。因为求A^(-1)的过程中,会做许多不必要的计算。而且当A近于奇异时,很难解出来。(当然,如果你尝试过可以很快的解出来,比如用matlab中的inv(A)*b,因为有简单的命令,也不失为好的选择。)

对于迭代法,LU分解后用Gaussian消去法是个不错的选择,只是要自己写些程序,不像直接法那样方便。虽然是迭代,但matlab中提供了一个你可以直接用的命令,即A\b。还有就是对一些形式较为特殊的矩阵,比如正定的对称矩阵,你还可以用共轭梯度法,收敛速度非常快,而且适用于大而稀疏的矩阵。
系科仪器
2024-08-02 广告
科仪器致力于为微纳薄膜领域提供精益级测量及控制仪器,包括各种光谱椭偏、激光椭偏、反射式光谱等,从性能参数、使用体验、价格、产品可靠性及工艺拓展性等多个维度综合考量,助客户提高研发和生产效率,以及带给客户更好的使用体验。... 点击进入详情页
本回答由系科仪器提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式