
1个回答
展开全部
∫ xe^x/(x + 1)² dx
= ∫ [(x + 1) - 1]e^x/(x + 1)² dx
= ∫ e^x/(x + 1) dx - ∫ e^x/(x + 1)² dx
= ∫ e^x/(x + 1) dx - ∫ e^x d[- 1/(x + 1)]
= ∫ e^x/(x + 1) dx + e^x/(x + 1) - ∫ 1/(x + 1) d(e^x),分部积分法
= ∫ e^x/(x + 1) dx + e^x/(x + 1) - ∫ e^x/(x + 1) dx
= e^x/(x + 1) + C
= ∫ [(x + 1) - 1]e^x/(x + 1)² dx
= ∫ e^x/(x + 1) dx - ∫ e^x/(x + 1)² dx
= ∫ e^x/(x + 1) dx - ∫ e^x d[- 1/(x + 1)]
= ∫ e^x/(x + 1) dx + e^x/(x + 1) - ∫ 1/(x + 1) d(e^x),分部积分法
= ∫ e^x/(x + 1) dx + e^x/(x + 1) - ∫ e^x/(x + 1) dx
= e^x/(x + 1) + C
追问
明显不是我的题
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询