1+1=?????????????

 我来答
创作者DJ6Q3ElPGB
2012-01-31 · TA获得超过2.9万个赞
知道大有可为答主
回答量:1.3万
采纳率:26%
帮助的人:705万
展开全部
可能性一:“1
1=2”
按照常理来说,“1
1”一定等于“2”,这是准确无疑的。计算器上,生活当中,都足以能够证实这一点。
比如:“1个苹果
1个苹果=2个苹果、1个CB
1个CB=2个CB、1个人
1个人=2个人……”这些例子貌似幼稚了点,但――却是证明“1
1=2”的有力证据!
可能性二:“1
1=1”
“1
1”还等于“1”?看到这里,你一定有所疑问,可这个原因却不足以为奇。聪明的你心里一定早就明白这其中的奥秘了!
的确,在以下情况时,“1
1”它就是等于“1”!
“1堆沙
1堆沙”,合起来,不还是1堆沙么?!“1滴水
1滴水”也等于一滴水!只要是可以现形溶解的物品,合起来,都会组合成为另一个新的物体。它的单位,仍旧是“1”,只不过体积有所变化。
所以说,“1
1=1”的可能性也是不能排除滴!
可能性三:“1
1=3”
这个结果一定出乎在座的意料!“1
1”怎么会等于“3”呢?别着急,待我慢慢道来。
说实在,这还是我从别人的口中“窃取”过来的。常言道:“一个生物与另一个生物结合会出现‘结晶’!”(好象不是‘常言’)这下你有点眉目了吧!
对了!一个生物与另一个生物结合出来的“结晶”,再加上生物的本身,不就是3个生物了么?可见,“1
1”在此类情况下是等于“3”,无误的!
(嘻嘻……想象力够猛吧!窃笑……)
可能性四:“1
1=王”
虽然说数学一定要数字,但是有了文字的渗入,又会得到另一种结果~!
这个可能,完全是按“中西结合”的方法来计算的。首先,把“阿拉伯数字“1”改为“中文‘一’”,加号不改变,然后重新排列,就得到了:‘一’、‘
’和‘一’,这样的循序刚好成为了抒写文字“王”字的笔画循序
上海联韬企业
2025-09-16 广告
联韬企业管理咨询有限公司是专注在供应链管理和运营管理领域的培训咨询机构,承办CPIM/CSCP/CLTD/SCOR DS认证项目的教育培训及考试管理,为企业和个人提供教育培训,专业认证考试和咨询指导服务。帮助企业实施和改进管理流程;提高管理... 点击进入详情页
本回答由上海联韬企业提供
抗驰烃0i2
2010-10-09 · TA获得超过3768个赞
知道小有建树答主
回答量:2096
采纳率:25%
帮助的人:902万
展开全部
这是普遍规律
如果要证明的话
证法如下

歌德巴赫1+1成立的证明(简化版)
(因为是简略版,别人能够证明的而且不影响证明的部分略去,详细看全文原稿)
证明如下:
2是第一个质数,也是唯一的偶质数。我们用筛法把偶数全部去掉,用数列表示剩余的数,也就是剩下有可能是质数的数列,如下:
2N+1(N=1,2,3……)(间隙) (全部质数都可以用此表示)
2N(N=2,3……)(筛子) (2质数筛去的全部非质数都可以用此表示)
我把这个称为间隙,2之后的第一个间隙肯定为质数,所以N取最小值1即可取得下一个质数3。☆以下为基础步骤,需要理解。我们在数列2N+1中把下一个质数数列筛子3N减去。(为节省空间后面的N的取值范围不再标注)
☆ 我先把间隙 2N+1表示为 2N×3+(1+2×(3-1))=6N+5
2N×3+(1+2×(3-2))=6N+3=3×(2N+1)
2N×3+(1+2×(3-3))=6N+1
把筛子3N表示为3×(2N+1)和3×2N,其中3×2N棣属于筛子2N,因此得到除去筛子3N后的新的间隙表示公式:
☆ 6N+5, 6N+1(全部质数都可以用其中之一表示)
我们再在此基础上算出下一个质数为5(N=0),其中1为特殊数一直会出现在后面的公式,好我现在把筛子5N减去得出间隙为:(步骤省略)
30N+29, 30N+23,30N+17, 30N+11,30N+5 (棣属于父系基因5)
30N+25, 30N+19,30N+13, 30N+7, 30N+1 (棣属于父系基因1)
同样处理方法把30N+25和30N+5除去得出间隙为:
☆ 30N+29, 30N+23,30N+17, 30N+11,30N+19,30N+13, 30N+7, 30N+1
☆ 突破口:注意下面出现全部质数的规律,我把以下数表称为棣属7的同辈质数表:
再重复一次上面步骤,得出间隙:(令P=210N)
行宽 基因29 基因23 基因19 基因17 基因13 基因11 基因7 基因1
30 P+209 P+203 P+199 P+197 P+193 P+191 P+187 P+181
P+179 P+173 P+169 P+167 P+163 P+161 P+157 P+151
P+149 P+143 P+139 P+137 P+133 P+131 P+127 P+121
P+119 P+113 P+109 P+107 P+103 P+101 P+97 P+91
P+89 P+83 P+79 P+77 P+73 P+71 P+67 P+61
P+59 P+53 P+49 P+47 P+43 P+41 P+37 P+31
P+29 P+23 P+19 P+17 P+13 P+11 P+7 P+1
列宽 2 6 4 2 4 2 4 6 2
除去7N筛子(表中粗体部分,刚好每个基因要除去一个,占1/7)和除去由N个大于7的质数之积(不大于210的部分)(我称其为空位),☆剩下的就全部是质数。(N=0)(需要理解)
终于到证明1+1部分啦!!!
我们现在来研究一下这个质数表有什么规律,首先任意取一个偶数,比如198,再任意去表中两个数,我现在取107和103,107+103=210,210比198大12,现在将107和103进行移位103向右移动三位得出107+91=198,但是读者会想91不是质数啊,没错,我们现在将107向上移动一位等于137,91向下移动一位等于61,137+61还是等于198,而且两个都是质数,因为行宽是一样的。你还可以将107向下移动两位,103向上移动两位得出47+151=198,也都是质数。再者将47向右移动两位,将151向左移动一位,得出再一个41+157=198。用因子6,4,2可以构成2~30里面的任何一个偶数,有人可能问6,4,2要构成28不知道要移动多少,表格容不下,其实就是+30再减2。如果遇到太大的偶数,则放到下一个质数表。
我们现在来看看最下面一行的质数也就是基因部分29,23,19,17,13,11,7,5,3,2(其中5,3,2为外延尾部)可以组成的偶数有8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,它们是连续的,而行宽是30,也就是说你可以随意在这组数列增加30×N,也就是说这个数表可以表示(8~36)+30×N这个范围的全部质数,N至少可以取7(实际大得多,但我为什么只证明7呢,自己想),举个例子23+19,虽然23最上有个空位,但是你可以在19那里向上移动一位。(自己理解)也就是说这个数表可以表示8~(36+30×7),即8~246>210任何质数。至于5,3,2外露部分可以配合另外一个数先向左移动直至增加30(超级重点理解部分,至此已经解决1+1问题)
好我们继续向下证明,以这个质数表的全部质数作为父系基因(除去下一个质数筛子11N和除去由N个大于11的质数之积(不大于2310的部分)后得到的质数),得出棣属11的同辈质数表:(因为质数表太大不作列出,有43列×11行大小)
我们现在来分析11的同辈质数表性质:
行宽:210
列宽:
基因 199 197 193 191 181 179 173 167 163
列宽 2 2 4 2 10 2 6 6 4
基因 157 151 149 139 137 131 127 113 109
列宽 6 6 2 10 2 6 4 14 4
余下基因列宽不再列举(原稿有,自己看),可以知道列宽有14,10,6,4,2,足以构成2~210里面任何一个偶数,而且6,4,2是继承了上一个质数表的列宽,而且后面会一直出现,14,10是新出现的列宽因子,以后会一直遗传下去。
☆ 现在又到要理解的部分啦!
因为这个表的基因部分(最下面一行)正是上一个表的全部质数,也就是说底部一列可以表示8~246,而行宽是210,同理这个质数表可以表示(8~246)+210×N(N至少可以取到11),也就是说这个质数表可以表示8~2556>2310。下一个表的基因部分则是以此表产生,而且下一个表的行宽为2310,因此可以无限推导下去。
至于N个大于11的质数之积的数目,23100.5=48,11>89,远大于一半,所以对结论不产生影响。原文有证明,要多列几个质数表,空位产生的速度追不上质数表扩张的速度,到了后面比例空位占质数表的比例极低!另外被筛去的169非质数,在下个表会产生169+210=379为质数,但是对推导无影响!我会在全文详细讨论。

结论:由以上可以推出任何大于6的偶数可以表示为2个质数之和。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
sdtjjx
2010-10-06 · TA获得超过573个赞
知道小有建树答主
回答量:235
采纳率:0%
帮助的人:110万
展开全部
数学里等于2。
字谜里等于田、甲、申、由。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
85...2@qq.com
2010-10-10
知道答主
回答量:6
采纳率:0%
帮助的人:0
展开全部
2
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式