在三角形中,AB=根号6-根号2,C=30°,则AC+BC的最大值是

林皖的供应链知识库
2010-10-06 · TA获得超过4827个赞
知道小有建树答主
回答量:423
采纳率:0%
帮助的人:409万
展开全部
解:已知在△ABC中,AB=-√2+√6,∠C=30°
设∠A>∠B,
过A点作AD⊥BC,交BC于D点。
在直角△ACD中
∠C=30°,AD=AC/2,CD=AC*cos30°=(√3/2)*AC
在直角△ABD中
BD^2=AB^2-AD^2
=(-√2+√6)^2-(AC/2)^2
=8-4√3-AC^2/4
BD=√(8-4√3-AC^2/4)
BC=CD+BD=(√3/2)*AC+√(8-4√3-AC^2/4)
AC+BC
=AC+(√3/2)*AC+√(8-4√3-AC^2/4)
=(1+√3/2)*AC+√(8-4√3-AC^2/4)
设AC+BC=s,AC=x,则
s=(1+√3/2)x+√(8-4√3-x^2/4)
s-(1+√3/2)x=√(8-4√3-x^2/4)
[s-(1+√3/2)x]^2=8-4√3-x^2/4
(2+√3)x^2-(2+√3)sx+s^2-4(2-√3)=0
x^2-sx+[s^2-4(2-√3)]/(2+√3)=0
判别式△=(-s)^2-4*[s^2-4(2-√3)]/(2+√3)≥0
s^2≤16
因s>0
故s的最大值=4
答:AC+BC的最大值=4
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式