python怎么实现opencv3 svm训练模型保存和加载? 20
1个回答
展开全部
在做模型训练的时候,尤其是在训练集上做交叉验证,通常想要将模型保存下来,然后放到独立的测试集上测试,下面介绍的是python中训练模型的保存和再使用。
scikit-learn已经有了模型持久化的操作,导入joblib即可
from sklearn.externals import joblib
模型保存
>>> os.chdir("workspace/model_save")>>> from sklearn import svm>>> X = [[0, 0], [1, 1]]>>> y = [0, 1]>>> clf = svm.SVC()>>> clf.fit(X, y) >>> clf.fit(train_X,train_y)>>> joblib.dump(clf, "train_model.m")
通过joblib的dump可以将模型保存到本地,clf是训练的分类器
模型从本地调回
>>> clf = joblib.load("train_model.m")
通过joblib的load方法,加载保存的模型。
然后就可以在测试集上测试了
clf.predit(test_X,test_y)
scikit-learn已经有了模型持久化的操作,导入joblib即可
from sklearn.externals import joblib
模型保存
>>> os.chdir("workspace/model_save")>>> from sklearn import svm>>> X = [[0, 0], [1, 1]]>>> y = [0, 1]>>> clf = svm.SVC()>>> clf.fit(X, y) >>> clf.fit(train_X,train_y)>>> joblib.dump(clf, "train_model.m")
通过joblib的dump可以将模型保存到本地,clf是训练的分类器
模型从本地调回
>>> clf = joblib.load("train_model.m")
通过joblib的load方法,加载保存的模型。
然后就可以在测试集上测试了
clf.predit(test_X,test_y)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询