这个分式怎么积分
2个回答
展开全部
∫ (x+1)/(x^2-2x+5) dx
=(1/2)∫ (2x-2)/(x^2-2x+5) dx + 2∫ dx/(x^2-2x+5)
=ln|x^2-2x+5| +2∫ dx/(x^2-2x+5)
=ln|x^2-2x+5| + arctan[(x-1)/2]+ C
consider
x^2-2x+5 = (x-1)^2 +4
let
x-1 = 2tanu
dx = 2(secu)^2 .du
∫ dx/(x^2-2x+5)
=(1/2)∫ du
=(1/2) u + C'
=(1/2)arctan[(x-1)/2]+ C'
=(1/2)∫ (2x-2)/(x^2-2x+5) dx + 2∫ dx/(x^2-2x+5)
=ln|x^2-2x+5| +2∫ dx/(x^2-2x+5)
=ln|x^2-2x+5| + arctan[(x-1)/2]+ C
consider
x^2-2x+5 = (x-1)^2 +4
let
x-1 = 2tanu
dx = 2(secu)^2 .du
∫ dx/(x^2-2x+5)
=(1/2)∫ du
=(1/2) u + C'
=(1/2)arctan[(x-1)/2]+ C'
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询