为什么每一个含有第一类间断点的函数没有原函数

 我来答
教育小百科达人
2019-05-26 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:474万
展开全部

有导数连续定理。

设f(x)在x0的某个邻域上连续,且在该邻域上除去x0这一点之外都可导,其导数为f'(x)。如果当x趋于x0时f'(x)有极限,则f(x)在x0这一点也可导,并且有f'(x0)=lim(x→x0)f'(x)。

根据这个定理我们马上知道,如果一个函数在某个区间上可导,它的导数在该区间上不会有第一类间断点。换句话说,在区间上有第一类间断点就没有原函数

间断点可以分为无穷间断点和非无穷间断点,在非无穷间断点中,还分可去间断点和跳跃间断点。左右极限存在且相等是可去间断点,左右极限存在且不相等才是跳跃间断点。

扩展资料:

函数在该点可以无定义,当自变量趋于该点时,函数值在两个常数间变动无限多次。如函数y=sin(1/x)在x=0处。

由上述对间断点的描述可知,函数f(x)在第一类间断点的左右极限都存在,而函数f(x)在第二类间断点的左右极限至少有一个不存在,这也是第一类间断点和第二类间断点的本质上的区别。

函数f(x)在点x0的左右极限都存在且相等,但不等于f(x0)或者f(x)在点x0无定义。则函数f(x)在点x0为不连续,而点x0称为函数f(x)的间断点。

参考资料来源:百度百科——间断点

sumeragi693
高粉答主

2018-03-04 · 说的都是干货,快来关注
知道大有可为答主
回答量:3.8万
采纳率:79%
帮助的人:1.7亿
展开全部
有导数连续定理。
设f(x)在x0的某个邻域上连续,且在该邻域上除去x0这一点之外都可导,其导数为f'(x)。如果当x趋于x0时f'(x)有极限,则f(x)在x0这一点也可导,并且有f'(x0)=lim(x→x0)f'(x)。
根据这个定理我们马上知道,如果一个函数在某个区间上可导,它的导数在该区间上不会有第一类间断点。换句话说,在区间上有第一类间断点就没有原函数。
更多追问追答
追问
没听懂
能不能借助题中的函数说明
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
心随欲你8015
高粉答主

2021-01-02 · 每个回答都超有意思的
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式