1个回答
展开全部
f(x)=x+√(1-x)
1-x≥0
x≤1
定义域 =(-∞, 1]
f(x)=x+√(1-x)
f'(x)= 1 - 1/[2√(1-x)]
f'(x) =0
1 - 1/[2√(1-x)] =0
2√(1-x) -1 =0
√(1-x) =1/2
1-x = 1/4
x=3/4
f'(x)| x=3/4+ <0 , f'(x)| x=3/4- >0
x=3/4 (max)
max f(x)
= f(3/4)
=3/4+√(1-3/4)
=3/4 +1/2
=5/4
lim(x->-∞) x+√(1-x) ->-∞
值域 =(-∞, 5/4]
1-x≥0
x≤1
定义域 =(-∞, 1]
f(x)=x+√(1-x)
f'(x)= 1 - 1/[2√(1-x)]
f'(x) =0
1 - 1/[2√(1-x)] =0
2√(1-x) -1 =0
√(1-x) =1/2
1-x = 1/4
x=3/4
f'(x)| x=3/4+ <0 , f'(x)| x=3/4- >0
x=3/4 (max)
max f(x)
= f(3/4)
=3/4+√(1-3/4)
=3/4 +1/2
=5/4
lim(x->-∞) x+√(1-x) ->-∞
值域 =(-∞, 5/4]
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询