怎样证明狄利克雷判别法
2个回答
展开全部
不能
狄利克雷判别法的an单调趋于0满足阿贝尔的第一个条件an单调有界。bai
第二个条件∑bn部分和有界不能推出bn收敛.也就是说狄利克雷判别法的条件比阿贝尔的要宽松。
例
∞
∑(1/n)cosn∏
n=1
由阿贝尔
an=1/n单调有界
但∑cosn∏不收敛
因为它的部分和Sn=-1(n是奇数),0(n是偶数)没有极限。
不能由阿贝尔判别收敛
但Sn是有界的由狄利克雷判别法可判断出它是收敛的,所以狄利克雷判别法比阿贝尔判别法条件更松,应用更广。两个判别法不是等价的,阿贝尔判别法是狄利克雷判别法的特殊情况。
如果两种定理可以互相推导就是说两种定理等价。
既然是等价的两个命题为什么狄利克雷判别法可以判定的阿贝尔判别法不能判定。阿贝尔判别法是狄利克雷判别法的一个特例,因为狄利克雷判别法的条件之一部分和有界是一个很宽松的条件,它意味
bn可以是收敛的,也可以不是收敛的,就象我举的例子。那有没有只有阿贝尔判别法可以判定而狄利克雷判别法不能判定的呢?没有。我们在由狄利克雷判别法推倒出阿贝尔判别法时已经证明阿贝尔判别法的两个条件是满足狄利克雷判别法的。因此只要是阿贝尔能判断的狄利克雷也能判断。既然阿贝尔能判断的狄利克雷也能判断那为什么还要阿贝尔判别法?因为由狄利克雷判别法判定满足阿贝尔条件的级数时,我们还要把级数构造成
∑(an-a)bn+a∑bn=∑anbn
的形式,比较繁因此可直接用阿贝尔判别法判定。
从形式上看阿贝尔的an单调有界比狄利克雷的an单调趋于0要宽松,但我们可以通过
∑(an-a)bn+a∑bn=∑anbn
把这个条件转化成单调趋于0
狄利克雷判别法的an单调趋于0满足阿贝尔的第一个条件an单调有界。bai
第二个条件∑bn部分和有界不能推出bn收敛.也就是说狄利克雷判别法的条件比阿贝尔的要宽松。
例
∞
∑(1/n)cosn∏
n=1
由阿贝尔
an=1/n单调有界
但∑cosn∏不收敛
因为它的部分和Sn=-1(n是奇数),0(n是偶数)没有极限。
不能由阿贝尔判别收敛
但Sn是有界的由狄利克雷判别法可判断出它是收敛的,所以狄利克雷判别法比阿贝尔判别法条件更松,应用更广。两个判别法不是等价的,阿贝尔判别法是狄利克雷判别法的特殊情况。
如果两种定理可以互相推导就是说两种定理等价。
既然是等价的两个命题为什么狄利克雷判别法可以判定的阿贝尔判别法不能判定。阿贝尔判别法是狄利克雷判别法的一个特例,因为狄利克雷判别法的条件之一部分和有界是一个很宽松的条件,它意味
bn可以是收敛的,也可以不是收敛的,就象我举的例子。那有没有只有阿贝尔判别法可以判定而狄利克雷判别法不能判定的呢?没有。我们在由狄利克雷判别法推倒出阿贝尔判别法时已经证明阿贝尔判别法的两个条件是满足狄利克雷判别法的。因此只要是阿贝尔能判断的狄利克雷也能判断。既然阿贝尔能判断的狄利克雷也能判断那为什么还要阿贝尔判别法?因为由狄利克雷判别法判定满足阿贝尔条件的级数时,我们还要把级数构造成
∑(an-a)bn+a∑bn=∑anbn
的形式,比较繁因此可直接用阿贝尔判别法判定。
从形式上看阿贝尔的an单调有界比狄利克雷的an单调趋于0要宽松,但我们可以通过
∑(an-a)bn+a∑bn=∑anbn
把这个条件转化成单调趋于0
展开全部
狄利克雷判别法的an单调趋于0满足阿贝尔的第一个条件an单调有界。
第二个条件∑bn部分和有界不能推出bn收敛.也就是说狄利克雷判别法的条件比阿贝尔的要宽松。
例
∞
∑(1/n)cosn∏
n=1
由阿贝尔
an=1/n单调有界
但∑cosn∏不收敛
因为它的部分和Sn=-1(n是奇数),0(n是偶数)没有极限。
不能由阿贝尔判别收敛
但Sn是有界的由狄利克雷判别法可判断出它是收敛的,所以狄利克雷判别法比阿贝尔判别法条件更松,应用更广。两个判别法不是等价的,阿贝尔判别法是狄利克雷判别法的特殊情况。
第二个条件∑bn部分和有界不能推出bn收敛.也就是说狄利克雷判别法的条件比阿贝尔的要宽松。
例
∞
∑(1/n)cosn∏
n=1
由阿贝尔
an=1/n单调有界
但∑cosn∏不收敛
因为它的部分和Sn=-1(n是奇数),0(n是偶数)没有极限。
不能由阿贝尔判别收敛
但Sn是有界的由狄利克雷判别法可判断出它是收敛的,所以狄利克雷判别法比阿贝尔判别法条件更松,应用更广。两个判别法不是等价的,阿贝尔判别法是狄利克雷判别法的特殊情况。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询