求二重积分∫∫√(x²+y²)dxdy,积分区域D由直线y=x及曲线y=x²围成。 250
想用极坐标做(一般方法好像不怎么好做,也不会。。。),但是ρ的范围好像不怎么好确定,答案错误。。。请大佬们帮忙,谢谢了!...
想用极坐标做(一般方法好像不怎么好做,也不会。。。),但是ρ的范围好像不怎么好确定,答案错误。。。请大佬们帮忙,谢谢了!
展开
2个回答
展开全部
y = x^2, ρsint = ρ^2(cost)^2, 得 ρ = sint/(cost)^2,
I = ∫∫<D>√(x²+y²)dxdy
= ∫<0, π/4> dt ∫<0, sint/(cost)^2> ρ·ρdρ
= (1/3)∫<0, π/4> dt [ρ^3]<0, sint/(cost)^2>
= (1/3)∫<0, π/4> [(sint)^3/(cost)^6]dt
= (-1/3)∫<0, π/4> [1-(cost)^2]dcost/(cost)^6
= (-1/3)[(-1/5)/(cost)^5-(-1/3)/(cost)^3]<0, π/4>
= (1/45)[3/(cost)^5-5/(cost)^3]<0, π/4>
= (1/45)[3·4√2-5·2√2] = (2/45)√2
I = ∫∫<D>√(x²+y²)dxdy
= ∫<0, π/4> dt ∫<0, sint/(cost)^2> ρ·ρdρ
= (1/3)∫<0, π/4> dt [ρ^3]<0, sint/(cost)^2>
= (1/3)∫<0, π/4> [(sint)^3/(cost)^6]dt
= (-1/3)∫<0, π/4> [1-(cost)^2]dcost/(cost)^6
= (-1/3)[(-1/5)/(cost)^5-(-1/3)/(cost)^3]<0, π/4>
= (1/45)[3/(cost)^5-5/(cost)^3]<0, π/4>
= (1/45)[3·4√2-5·2√2] = (2/45)√2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询